Graphs – beauty and truth

Graphs – beauty and truth (with apologies to Keats)

A good graph is elegant

I really like graphs. I like the way graphs turn numbers into pictures. A good graph is elegant. It uses a few well-placed lines to communicate what would take a paragraph of text. And like a good piece of literature or art, a good graph continues to give, beyond the first reading. I love looking at my YouTube and WordPress graphs. These graphs tell me stories. The WordPress analytics tell me that when I put up a new post, I get more hits, but that everyday more than 1000 people read one of my posts. The YouTube analytics tell me stories about when people want to know about different aspects of statistics. It is currently the end of the North American school year, and the demand is for my video on Choosing which statistical test to use. Earlier in the year, the video about levels of measurement is the most popular. And not many people view videos about statistics on the 25th of December. I’m happy to report that the YouTube and WordPress graphs are good graphs.

Spreadsheets have made it possible for anyone and everyone to create graphs. I like that graphs are easier to make. Drawing graphs by hand is a laborious task and fraught with error. But sometimes my heart aches when I see a graph used badly. I suspect that this is when a graphic artist has taken control, and the search for beauty has over-ridden the need for truth.

Three graphs spurred me to write this post.

Graph One: Bad-tasting Donut on house occupation

The first was on a website to find out about property values. I must have clicked onto something to find out about the property values in my area, and was taken to the qv website. And this is the graph that disturbed me.

Graphs named after food are seldom a good idea

Sure it is pretty – uses pretty colours and shading, and you can find out what it is saying by looking at the key – with the numbers beside it. But a pie or donut chart should not be used for data which has inherent order. The result here is that the segments are not in order. Or rather they are ordered from most frequent to least frequent, which is not intuitive. Ordinal data is best represented in a bar or column chart. To be honest, most data is best represented in a bar or column chart. My significant other suggested that bar charts aren’t as attractive as pie charts. Circles are prettier than rectangles. Circles are curvy and seem friendlier than straight lines and rectangles. So prettiness has triumphed over truth.

Graph Two: Misleading pictogram (a tautology?)

It may be a little strong to call bad communication lack of truth. Let’s look at another example. In a way it is cheating to cite a pictogram in a post like this. Pictograms are the lowest form of graph and are so often incorrect, that finding a bad one is easier than finding a good one. In the graph below of fatalities it is difficult to work out what one little person represents.

What does one little person represent?

A quick glance, ignoring the numbers, suggests that the road toll in 2014 is just over half what it was in 2012. However, the truth, calculated from the numbers, is that the relative size is 80%. 2012 has 12 people icons, representing 280 fatalities. One icon is removed for 2013, representing a drop of 9 fatalities. 2011 has one icon fewer again, representing a drop of 2 fatalities. There is so much wrong in the reporting of road fatalities, that I will stop here. Perhaps another day…

Graph Three: Mysterious display on Household income

And here is the other graph that perplexed me for some time. It came in the Saturday morning magazine from our newspaper, as part of an article about inequality in New Zealand. Anyone who reads my blog will be aware that my politics place me well left of centre, and I find inequality one of the great ills of the modern day. So I was keen to see what this graph would tell me. And the answer is…

See how long it takes for you to find where you appear on the graph. (Pretending you live in NZ)

I have no idea. Now, I have expertise in the promulgation of statistics, and this graph stumped me for some time. Take a good look now, before I carry on.

I did work out in the end, what was going on in the graph, but it took far longer than it should. This article is aimed at an educated but not particularly statistically literate audience, and I suspect there will be very few readers who spent long enough working out what was going on here. This graph is probably numerically correct. I had a quick flick back to the source of the data (who, by the way, are not to be blamed for the graph, as the data was presented in a table) and the graph seems to be an accurate depiction of the data. However, the graph is so confusing as to be worse than useless. Please post critiques in the comments. This graph commits several crimes. It is difficult to understand. It poses a question and then fails to help the reader find the answer. And it does not provide insights that an educated reader could not get from a table. In fact, I believe it has obscured the data.

Graphs are the main way that statistical analysts communicate with the outside world. Graphs like these ones do us no favours, even if they are not our fault. We need to do better, and make sure that all students learn about graphs.

Teaching suggestion – a graph a day

Here is a suggestion for teachers at all levels. Have a “graph a day” display – maybe for a month? Students can contribute graphs from the news media. Each day discuss what the graph is saying, and critique the way the graph is communicating. I have a helpful structure for reading graphs in my post: There’s more to reading graphs than meets the eye; 

Here is a summary of what I’ve said and what else I could say on the topic.

Thoughts about Statistical Graphs

  • The choice of graph depends on the purpose
  • The text should state the purpose of the graph
  • There is not a graph for everything you wish to communicate
  • Sometimes a table communicates better than a graph
  • Graphs are part of the analysis as well as part of the reporting. But some graphs are better to stay hidden.
  • If it takes more than a few seconds to work out what a graph is communicating it should either be dumped or have an explanation in the text
  • Truth (or communication) is more important than beauty
  • There is beauty in simplicity
  • Be aware than many people are colour-blind, or cannot easily differentiate between different shades.

Feedback from previous post on which graph to use

Late last year I posted four graphs of the same data and asked for people’s opinions. You can link back to the post here and see the responses: Which Graph to Use.

The interesting thing is not which graph was selected as the most popular, but rather that each graph had a considerable number of votes. My response is that it depends.  It depends on the question you are answering or the message you are sending. But yes – I agree with the crowd that Graph A is the one that best communicates the various pieces of information. I think it would be improved by ordering the categories differently. It is not very pretty, but it communicates.

I recently posted a new video on YouTube about graphs. It is a quick once-over of important types of graphs, and can help to clarify what they are about. There are examples of good graphs in there.


I have written about graphs previously and you can find them here on the Collected Works page.

I’m interested in your thoughts. And I’d love to see some beautiful and truthful graphs in the comments.

Advertisements

Play and learning mathematics and statistics

The role of play in learning

I have been reading further about teaching mathematics and came across this interesting assertion:

Play, understood as something frivolous, opposed to work, off-task behaviour, is not welcomed into most mathematics classrooms. But play is exactly what is needed. It is only play that can entice us to the type of repetition that is needed to learn how to inhabit the mathematical landscape and how to create new mathematics.
Friesen(2000) – unpublished thesis, cited in Stordy, Children Count, (2015)

Play and practice

It is an appealing idea that as children play, they have opportunities to engage in repetition that is needed in mastering some mathematical skills. The other morning I decided to do some exploration of prime numbers and factorising even before I got out of bed. (Don’t judge me!). It was fun, and I discovered some interesting properties, and came up with a way of labelling numbers as having two, three and more dimensions. 12 is a three dimensional number, as is 20, whereas 35 and 77 are good examples of two dimensional numbers. As I was thus playing on my own, I was aware that it was practising my tables and honing my ability to think multiplicatively. In this instance the statement from Friesen made sense. I admit I’m not sure what it means to “create new mathematics”. Perhaps that is what I was doing with my 2 and 3 dimensional numbers.

You may be wondering what this has to do with teaching statistics to adults. Bear with…

Traditional vs recent teaching methods for mathematics

Today on Twitter, someone asked what to do when a student says that they like being shown what to do, and then practising on textbook examples. This is the traditional method for teaching mathematics, and is currently not seen as ideal among many maths teachers (particularly those who inhabit the MathTwitterBlogosphere or MTBoS, as it is called). There is strong support for a more investigative, socially constructed approach to learning and teaching mathematics.  I realise that as a learner, I was happy enough learning maths by being shown what to do and then practising. I suspect a large proportion of maths teachers also liked doing that. Khan Academy videos are wildly popular with many learners and far too many teachers because they perpetuate this procedural view of mathematics. So is the procedural approach wrong? I think what it comes down to is what we are trying to teach. Were I to teach mathematics again I would not use “show then practise” as my modus operandi. I would like to teach children to become mathematicians rather than mathematical technicians. For this reason, the philosophies and methods of Youcubed, Dan Meyer and other MTBoS bloggers have appeal.

Play and statistics

Now I want to turn my thoughts to statistics. Is there a need for more play in statistics? Can statistics be playful in the way that mathematics can be playful? Operations Research is just one game after another! Simulation, critical path, network analysis, travelling salesperson, knapsack problem? They are all big games. Probability is immensely playful, but what about statistical analysis? Can and should statistics be playful?

My first response is that there is no play in statistics. Statistics is serious and important, and deals with reality, not joyous abstract ideas like prime numbers and the Fibonacci series – and two and three dimensional numbers.

The excitement of a fresh set of data

But there is that frisson of excitement as you finally finish cleaning your database and a freshly minted set of variables and observations beckons to you, with SPSS, SAS or even Excel at your fingertips. A new set of data is a new journey of discovery. Of course a serious researcher has already worked out a methodical route through her hypotheses… maybe. Or do we mostly all fossick about looking for patterns and insights, growing more and more familiar with the feel of the data, as if we were squeezing it through our fingers? So yes – my experience of data exploration is playful. It is an adventure, with wrong turns, forgetting the path, starting again, finding something only to lose it again and finally saying “enough” and taking a break, not because the data has been exhausted, but because I am.

Writing the report is like cleaning up

Writing up statistical analysis is less exciting. It feels like picking up the gardening tools and putting them away after weeding the garden. Or cleaning the paintbrushes after creating a masterpiece. That was not one of my strengths – finishing and tidying up afterwards. The problem was that I felt I had finished when the original task had been completed – when the weeds had been pulled or the painting completed. In my view, cleaning and putting away the tools was an afterthought that dragged on after the completion of the task, and too often got ignored. Happily I have managed to change my behaviour by rethinking the nature of the weeding task. The weeding task is complete when the weeds are pulled and in the compost and the implements are resting clean and safe where they belong. Similarly a statistical analysis is not what comes before the report-writing, but is rather the whole process, ending when the report is complete, and the data is carefully stored away for another day. I wonder if that is the message we give our students – a thought for another post.

Can statistics be playful?

For I have not yet answered the question. Can statistics be playful in the way that mathematics can be playful? We want to embed play in order to make our task of repetition be more enjoyable, and learning statistics requires repetition, in order to develop skills and learn to differentiate the universal from the individual. One problem is that statistics can seem so serious. When we use databases about global warming, species extinction, cancer screening, crime detection, income discrepancies and similarly adult topics, it can seem almost blasphemous to be too playful about it.

I suspect that one reason our statistics videos on YouTube are so popular is because they are playful.

helen-has-attitude

Helen has an attitude problem

Helen has a real attitude problem and hurls snarky comments at her brother, Luke. The apples fall in an odd way, and Dr Nic pops up in strange places. This playfulness keeps the audience engaged in a way that serious, grown up themes may not. This is why we invented Ear Pox in our video about Risk and screening, because being playful about cancer is inappropriate.

Ear Pox is imaginary disease for which we are studying the screening risk.

Ear Pox is imaginary disease for which we are studying the screening risk.

Dragonistics data cards provide light-hearted data which yields worth-while results.

A set of 240 Dragonistics data cards provides light-hearted data which yields satisfying results.

When I began this post I did not intend to bring it around to the videos and the Dragonistics data cards, but I have ended up there anyway. Maybe that is the appeal of the Dragonistics data cards –  that they avoid the gravitas of true and real grown-up data, and maintain a playfulness that is more engaging than reality. There is a truthiness about them – the two species – green and red dragons are different enough to present as different animal species, and the rules of danger and breath-type make sense. But students may happily play with the dragon cards without fear of ignorance or even irreverence of a real-life context.

What started me thinking about play with regards to learning maths and statistics is our Cat Maths cards. There are just so many ways to play with them that I can see Cat Maths cards playing an integral part in a junior primary classroom. This is why we created them and want them to make their way into classrooms. Sadly, our Kickstarter campaign was unsuccessful, but we hope to work with an established game manufacturer to bring them to the market by the end of 2017.

We'd love your help.

We’d love your help.

Your thoughts about play and statistics

And maybe we need to be thinking a little more about the role of play in learning statistics – even for adults! What do you think? Can and should statistics be playful? And for what age group? Do you find statistical analysis fun?

 

A Statistics-centric curriculum

Calculus is the wrong summit of the pyramid.

“The mathematics curriculum that we have is based on a foundation of arithmetic and algebra. And everything we learn after that is building up towards one subject. And at top of that pyramid, it’s calculus. And I’m here to say that I think that that is the wrong summit of the pyramid … that the correct summit — that all of our students, every high school graduate should know — should be statistics: probability and statistics.”

Ted talk by Arthur Benjamin in February 2009. Watch it – it’s only 3 minutes long.

He’s right, you know.

And New Zealand would be the place to start. In New Zealand, the subject of statistics is the second most popular subject in our final year of schooling, with a cohort of 12,606. By comparison, the cohort for  English is 16,445, and calculus has a final year cohort of 8392, similar in size to Biology (9038), Chemistry (8183) and Physics (7533).

Some might argue that statistics is already the summit of our curriculum pyramid, but I would see it more as an overly large branch that threatens to unbalance the mathematics tree. I suspect many maths teachers would see it more as a parasite that threatens to suck the life out of their beloved calculus tree. The pyramid needs some reconstruction if we are really to have a statistics-centric curriculum. (Or the tree needs pruning and reshaping – I think I have too many metaphors!)

Statistics-centric curriculum

So, to use a popular phrase, what would a statistics-centric curriculum look like? And what would be the advantages and disadvantages of such a curriculum? I will deal with implementation issues later.

To start with, the base of the pyramid would look little different from the calculus-pinnacled pyramid. In the early years of schooling the emphasis would be on number skills (arithmetic), measurement and other practical and concrete aspects. There would also be a small but increased emphasis on data collection and uncertainty. This is in fact present in the NZ curriculum. Algebra would be introduced, but as a part of the curriculum, rather than the central idea. There would be much more data collection, and probability-based experimentation. Uncertainty would be embraced, rather than ignored.

In the early years of high school, probability and statistics would take a more central place in the curriculum, so that students develop important skills ready for their pinnacle course in the final two years. They would know about the statistical enquiry cycle, how to plan and collect data and write questionnaires.  They would perform their own experiments, preferably in tandem with other curriculum areas such as biology, food-tech or economics. They would understand randomness and modelling. They would be able to make critical comments about reports in the media . They would use computers to create graphs and perform analyses.

As they approach the summit, most students would focus on statistics, while those who were planning to pursue a career in engineering would also take calculus. In the final two years students would be ready to build their own probabilistic models to simulate real-world situations and solve problems. They would analyse real data and write coherent reports. They would truly understand the concept of inference, and why confidence intervals are needed, rather than calculating them by hand or deriving formulas.

There is always a trade-off. Here is my take on the skills developed in each of the curricula.

Calculus-centric curriculum

Statistics-centric curriculum

Logical thinking Communication
Abstract thinking Dealing with uncertainty and ambiguity
Problem-solving Probabilistic models
Modelling (mainly deterministic) Argumentation, deduction
Proof, induction Critical thinking
Plotting deterministic graphs from formulas Reading and creating tables and graphs from data

I actually think you also learn many of the calc-centric skills in the stats-centric curriculum, but I wanted to look even-handed.

Implementation issues

Benjamin suggests, with charming optimism, that the new focus would be “easy to implement and inexpensive.”  I have been a very interested observer in the implementation of the new statistics curriculum in New Zealand. It has not happened easily, being inexpensive has been costly, and there has been fallout. Teachers from other countries (of which there are many in mathematics teaching in NZ) have expressed amazement at how much the NZ teachers accept with only murmurs of complaint. We are a nation with a “can do” attitude, who, by virtue of small population and a one-tier government, can be very flexible. So long as we refrain from following the follies of our big siblings, the UK, US and Australia, NZ has managed to have a world-class education system. And when a new curriculum is implemented, though there is unrest and stress, there is seldom outright rebellion.

In my business, I get the joy of visiting many schools and talking with teachers of mathematics and statistics. I am fascinated by the difference between schools, which is very much a function of the head of mathematics and principal. Some have embraced the changes in focus, and are proactively developing pathways to help all students and teachers to succeed. Others are struggling to accept that statistics has a place in the mathematics curriculum, and put the teachers of statistics into a ghetto where they are punished with excessive marking demands.

The problem is that the curriculum change has been done “on the cheap”. As well as being small and nimble, NZ is not exactly rich. The curriculum change needed more advisors, more release time for teachers to develop and more computer power. These all cost. And then you have the problem of “me too” from other subjects who have had what they feel are similar changes.

And this is not really embracing a full stats-centric curriculum. Primary school teachers need training in probability and statistics if we are really to implement Benjamin’s idea fully. The cost here is much greater as there are so many more primary school teachers. It may well take a generation of students to go through the curriculum and enter back as teachers with an improved understanding.

Computers make it possible

Without computers the only statistical analysis that was possible in the classroom was trivial. Statistics was reduced to mechanistic and boring hand calculation of light-weight statistics and time-filling graph construction. With computers, graphs and analysis can be performed at the click of a mouse, making graphs a tool, rather than an endpoint. With computing power available real data can be used, and real problems can be addressed. High level thinking is needed to make sense and judgements and to avoid wrong conclusions.

Conversely, the computer has made much of calculus superfluous. With programs that can bash their way happily through millions of iterations of a heuristic algorithm, the need for analytic methods is seriously reduced. When even simple apps on an iPad can solve an algebraic equation, and Excel can use “What if” to find solutions, the need for algebra is also questionable.

Efficient citizens

In H.G. Wells’ popular but misquoted words, efficient citizenry calls for the ability to make sense of data. As the science fiction-writer that he was, he foresaw the masses of data that would be collected and available to the great unwashed. The levelling nature of the web has made everyone a potential statistician.

According to the engaging new site from the ASA, “This is statistics”, statisticians make a difference, have fun, satisfy curiosity and make money. And these days they don’t all need to be good at calculus.

Let’s start redesigning our pyramid.

Statistics – Singular and Plural, Lies and Truth

Language is an issue in teaching and learning statistics. There are many words that have meanings in statistics, different from their everyday meaning, and even with multiple meanings within the study of statistics. Examples of troublesome words are: error, correlation, regression, significant, model. I wrote about addressing this in Teaching Statistical Language.

But the problem starts even with the name of the subject. There are at least three meanings for the term “statistics”. The word is not even consistently singular or plural. I suggest three meanings are: Data (plural), analysis (singular) and information (plural). What we teach focusses on the analysis, but involves data and information.

Statistics as Data

Sports people love statistics. Game shows and pub quizzes draw on data such as numbers of Olympic medals, wives, years of warfare, Oscars and a myriad other subjects. These statistics can be fascinating, relevant, boring or trivial. My most read blog post is entitled “Khan Academy Statistics videos are not good”. I suspect that quite a few people are searching for statistics about Khan Academy, rather than the subject of my post. This is borne out by the fact that a more recent post:  “Open Letter to Khan Academy about Basic Probability” gets considerably less traffic. I suppose there are not many people who want to know about the probability of Khan Academy. Pity – as the second post is better.

There is an entire discipline around “Official Statistics”. At a recent conference (ORSNZ/NZSA) I was fascinated by a presentation given about the need for statistics in a time of disaster and recovery. John Créquer talked about a subject close to my heart, the Christchurch earthquakes. In the weeks and months of the earthquakes authorities needed information of how many people there were of high need, in order to provide adequate service. Finding these numbers was an exercise in ingenuity and co-operation, drawing on data collected for other purposes. The presenter suggested that at times like that a national register would be invaluable. New Zealand does not have such a thing. It is an interesting conflict between the need for privacy and the public good. Créquer is a statistician from Statistics New Zealand, who has been contracted to CERA (The Canterbury Earthquake Recovery Authority) for now.  I had never thought that a statistician had uniquely valuable skills and insights to be used in a time of recovery from disaster.

The internet is an amazing source of the data kind of statistics. You can find out the number of an awful lot of things, simply by putting the question in a search box, or looking on Wikipedia. (I’ve made my annual monetary contribution – have you?). Thanks to Wikipedia, we don’t need to wonder about trivial things anywhere near as much as we used to.

Statistics as Analysis

Statistics, as it is taught and learned as a subject, mostly refers to statistical analysis and the inquiry process in which it is embedded. I sometimes wonder what people are thinking when I say that I produce materials to help people learn statistics. Do they imagine a classful of students memorising the populations of countries and batting averages?

“It is easy to lie with statistics. It is hard to tell the truth without it.”

This quote is from Andrejs Dunkels, a person whom I wish I had met. When I was looking for the source of this quote, I found a tribute page to a man who contributed greatly to the world of statistics. His quote uses statistics as a singular noun.

The analysis aspect of statistics involves taking raw data and turning it into information and evidence of what may be truth. Science would not progress far without the tools of statistics to take the raw results of experiments and observations, and using the insights gained by the mathematical world of probability, discern their significance. Without the discoveries and tools of statistics we would not be able to make sensible inference about populations from samples and experiments.

Statistical analysis uses mathematical tools, but is far more than just the mathematics. It is easy to produce wrong information by using the mechanistic calculations without thinking critically about the results. I once produced some very wrong models of performance of bank branches, using multiple regression. I even came up with some interesting rationalisations for the counter-intuitive results. Then I did a residual plot and found one outlier that changed everything! Once I removed it, the models changed to the extent that some of the coefficients changed sign. I wonder how many wrong models persist because of well-intentioned, but unskilled analysts.

There is a wonderful paragraph I used to quote in my second year statistical methods class, that unfortunately I can’t find – even using Wikipedia. It says, in essence: Statistical models are not sausage machines, taking in data and turning it into information without the interference of a human. If the results do not make sense and align with common understanding of the phenomenon, they are probably wrong.

If someone can direct me to the actual quote, I’d be very happy. I used to get the class to recite it in unison.

The point I am making is that the second meaning of statistics is a combination of science and art. It needs people.

Statistics as Information

This is similar to the first meaning, but I think that processed data should have a home separate from raw data. Statistical results include relationships and differences, not just “the facts.” I would put graphs and tables into this category. I think this category is scarier than statistics as data. Everyone can understand that Henry the Eight had six wives, and New Zealand won six gold medals at the London Olympics. Those are non-scary statistics, and easily accessible. They are statistics as data or facts.

What is more daunting to many people is the results of analysis. This is where we try to explain the population effect of cancer screening, the significance (statistical) of an increase or decrease in birthrate, the effect of seasonality on the sales of jewellery in the USA, the evidence that increasing numbers of cows are causing a degradation of water quality in natural water sources. These statistics need to be well presented. Part of our role as teachers is to help future producers of such information to be able to express themselves well so these statistics are accessible. Another part of our role is help future consumers of statistics to understand them.

Our role is important – for all three types of statistics.

How to learn statistics (Part 2)

Some more help (preaching?) for students of statistics

Last week I outlined the first five principles to help people to learn and study statistics.

They focussed on how you need to practise in order to be good at statistics and you should not wait until you understand it completely before you start applying. I sometimes call this suspending disbelief. Next I talked about the importance of context in a statistical investigation, which is one of the ways that statistics is different from pure mathematics. And finally I stressed the importance of technology as a tool, not only for doing the analysis, but for exploring ideas and gaining understanding.

Here are the next five principles (plus 2):

6. Terminology is important and at times inconsistent

There are several issues with regard to statistical terminology, and I have written a post with ideas for teachers on how to teach terminology.

One issue with terminology is that some words that are used in the study of statistics have meanings in everyday life that are not the same. A clear example of this is the word, “significant”. In regular usage this can mean important or relevant, yet in statistics, it means that there is evidence that an effect that shows up in the sample also exists in the population.

Another issue is that statistics is a relatively young science and there are inconsistencies in terminology. We just have to live with that. Depending on the discipline in which the statistical analysis is applied or studied, different terms can mean the same thing, or very close to it.

A third language problem is that mixed in with the ambiguity of results, and judgment calls, there are some things that are definitely wrong. Teachers and examiners can be extremely picky. In this case I would suggest memorising the correct or accepted terminology for confidence intervals and hypothesis tests. For example I am very fussy about the explanation for the R-squared value in regression. Too often I hear that it says how much of the dependent variable is explained by the independent variable. There needs to be the word “variation” inserted in there to make it acceptable. I encourage my students to memorise a format for writing up such things. This does not substitute for understanding, but the language required is precise, so having a specific way to write it is fine.

This problem with terminology can be quite frustrating, but I think it helps to have it out in the open. Think of it as learning a new language, which is often the case in new subject. Use glossaries, to make sure you really do know what a term means.

7. Discussion is important

This is linked with the issue of language and vocabulary. One way to really learn something is to talk about it with someone else and even to try and teach it to someone else. Most teachers realise that the reason they know something pretty well, is because they have had to teach it. If your class does not include group work, set up your own study group. Talk about the principles as well as the analysis and context, and try to use the language of statistics. Working on assignments together is usually fine, so long as you write them up individually, or according to the assessment requirements.

8. Written communication skills are important

Mathematics has often been a subject of choice for students who are not fluent in English. They can perform well because there is little writing involved in a traditional mathematics course. Statistics is a different matter, though, as all students should be writing reports. This can be difficult at the start, but as students learn to follow a structure, it can be made more palatable. A statistics report is not a work of creative writing, and it is okay to use the same sentence structure more than once. Neither is a statistics report a narrative of what you did to get to the results. Generous use of headings makes a statistical report easier to read and to write. A long report is not better than a short report, if all the relevant details are there.

9. Statistics has an ethical and moral aspect

This principle is interesting, as many teachers of statistics come from a mathematical background, and so have not had exposure to the ethical aspects of research themselves. That is no excuse for students to park their ethics at the door of the classroom. I will be pushing for more consideration of ethical aspects of research as part of the curriculum in New Zealand. Students should not be doing experiments on human subjects that involve delicate subjects such as abuse, or bullying. They should not involve alcohol or other harmful substances. They should be aware of the potential to do harm, and make sure that any participants have been given full information and given consent. This can be quite a hurdle, but is part of being an ethical human being. It also helps students to be more aware when giving or withholding consent in medical and other studies.

10. The study of statistics can change the way you view the world

Sometimes when we learn something at school, it stays at school and has no impact on our everyday lives. This should not be the case with the study of statistics. As we learn about uncertainty and variation we start to see this in the world around us. When we learn about sampling and non-sampling errors, we become more critical of opinion polls and other research reported in the media. As we discover the power of statistical analysis and experimentation, we start to see the importance of evidence-based practice in medicine, social interventions and the like.

11. Statistics is an inherently interesting and relevant subject.

And it can be so much fun. There is a real excitement in exploring data, and becoming a detective. If you aren’t having fun, you aren’t doing it right!

12. Resources from Statistics Learning Centre will help you learn.

Of course!

How to study statistics (Part 1)

To students of statistics

Most of my posts are directed at teachers and how to teach statistics. The blog this week and next is devoted to students. I present principles that will help you to learn statistics. I’m turning them into a poster, which I will make available for you to printing later. I’d love to hear from other teachers as I add to my list of principles.

1. Statistics is learned by doing

One of the best predictors of success in any subject is how much time you spent on it. If you want to learn statistics, you need to put in time. It is good to read the notes and the textbook, and to look up things on the internet and even to watch Youtube videos if they are good ones. But the most important way to learn statistics is by doing. You need to practise at the skills that are needed by a statistician, which include logical thinking, interpretation, judgment and writing. Your teacher should provide you with worthwhile practice activities, and helpful timely feedback. Good textbooks have good practice exercises. On-line materials have many practice exercises.

Given a choice, do the exercises that have answers available. It is very important that you check what you are doing, as it is detrimental to practise something in the wrong way. Or if you are using an on-line resource, make sure you check your answers as you go, so that you gain from the feedback and avoid developing bad habits.

So really the first principle should really be “statistics is learned by doing correctly.

2. Understanding comes with application, not before.

Do not wait until you understand what you are doing before you get started. The understanding comes as you do the work. When we learn to speak, we do not wait until we understand grammatical structure before saying anything. We use what we have to speak and to listen, and as we do so we gain an understanding of how language works.  I have found that students who spent a lot of time working through the process of calculating conditional probabilities for screening tests grew to understand the “why” as well as the “how” of the process. Repeated application of using Excel to fit a line to bivariate data and explaining what it meant, enabled students to understand and internalise what a line means. As I have taught statistics for two decades, my own understanding has continued to grow.

There is a proviso. You need to think about what you are doing, and you need to do worthwhile exercises. For example, mechanically calculating the standard deviation of a set of numbers devoid of context will not help you understand standard deviation. Looking at graphs and trying to guess what the standard deviation is, would be a better exercise. Then applying the value to the context is better still.

Applying statistical principles to a wide variety of contexts helps us to discern what is specific to a problem and what is general for all problems. This brings us to the next principle.

3. Spend time exploring the context.

In a statistical analysis, context is vital, and often very interesting. You need to understand the problem that gave rise to the investigation and collection of the data. The context is what makes each statistical investigation different. Statisticians often work alongside other researchers in areas such as medicine, psychology, biology and geology, who provide the contextual background to the problem. This provides a wonderful opportunity for the statistician to learn about a whole range of different subjects. The interplay between the data and context mean that every investigation is different.

In a classroom setting you will not have the subject expert available, but you do need to understand the story behind the data. These days, finding out is possible with a click of a Google or Wikipedia button. Knowing the background to the data helps you to make more sensible judgments – and it makes it more interesting.

4. Statistics is different from mathematics

In mathematics, particularly pure mathematics, context is stripped away in order to reveal the inner pure truth of numbers and logic.  There are applied areas involving mathematics, which are more like statistics, such as operations research and engineering. At school level, one of the things that characterises the study of maths is right and wrong answers, with a minimum of ambiguity. That is what I loved about mathematics – being able to apply an algorithm and get a correct answer. In statistics, however, things are seldom black-and-white.  In statistics you will need to interpret data from the perspective of the real world, and often the answer is not clear. Some people find the lack of certainty in statistics disturbing. There is considerable room for discussion in statistics. Some aspects of statistics are fuzzy, such as what to do with messy data, or which is the “best” model to fit a time series. There is a greater need for the ability to write in statistics, which makes if more challenging for students for whom English is not their native language.

5. Technology is essential

With computers and calculators, all sorts of activities are available to help learn statistics. Graphs and graphics enable exploration that was not possible when graphs had to be drawn by hand. You can have a multivariate data set and explore all the possible relationships with a few clicks. You should always look at the data in a graphical form before setting out to analyse.

Sometimes I would set optional exercises for students to explore the relationship between data, graphs and summary measures. Very few students did so, but when I led them through the same examples one at a time I could see the lights go on. When you are given opportunities to use computing power to explore and learn – do it!

But wait…there’s more

Here we have the first five principles for students learning statistics. Watch this space next week for some more. And do add some in the comments and I will try to incorporate your ideas as well.

Open Letter to Khan Academy about Basic Probability

Khan academy probability videos and exercises aren’t good either

Dear Mr Khan

You have created an amazing resource that thousands of people all over the world get a lot of help from. Well done. Some of your materials are not very good, though, so I am writing this open letter in the hope that it might make some difference. Like many others, I believe that something as popular as Khan Academy will benefit from constructive criticism.

I fear that the reason that so many people like your mathematics videos so much is not because the videos are good, but because their experience in the classroom is so bad, and the curriculum is poorly thought out and encourages mechanistic thinking. This opinion is borne out by comments I have read from parents and other bloggers. The parents love you because you help their children pass tests.  (And these tests are clearly testing the type of material you are helping them to pass!) The bloggers are not so happy, because you perpetuate a type of mathematical instruction that should have disappeared by now. I can’t even imagine what the history teachers say about your content-driven delivery, but I will stick to what I know. (You can read one critique here)

Just over a year ago I wrote a balanced review of some of the Khan Academy videos about statistics. I know that statistics is difficult to explain – in fact one of the hardest subjects to teach. You can read my review here. I’ve also reviewed a selection of videos about confidence intervals, one of which was from Khan Academy. You can read the review here.

Consequently I am aware that blogging about the Khan Academy in anything other than glowing terms is an invitation for vitriol from your followers.

However, I thought it was about time I looked at the exercises that are available on KA, wondering if I should recommend them to high school teachers for their students to use for review. I decided to focus on one section, introduction to probability. I put myself in the place of a person who was struggling to understand probability at school.

Here is the verdict.

First of all the site is very nice. It shows that it has a good sized budget to use on graphics and site mechanics. It is friendly to get into. I was a bit confused that the first section in the Probability and Statistics Section is called “Independent and dependent events”. It was the first section though. The first section of this first section is called Basic Probability, so I felt I was in the right place. But then under the heading, Basic probability, it says, “Can I pick a red frog out of a bag that only contains marbles?” Now I have no trouble with humour per se, and some people find my videos pretty funny. But I am very careful to avoid confusing people with the humour. For an anxious student who is looking for help, that is a bit confusing.

I was excited to see that this section had five videos, and two sets of exercises. I was pleased about that, as I’ve wanted to try out some exercises for some time, particularly after reading the review from Fawn Nguyen on her experience with exercises on Khan Academy. (I suggest you read this – it’s pretty funny.)

So I watched the first video about probability and it was like any other KA video I’ve viewed, with primitive graphics and a stumbling repetitive narration. It was correct enough, but did not take into account any of the more recent work on understanding probability. It used coins and dice. Big yawn. It wastes a lot of time. It was ok. I do like that you have the interactive transcript so you can find your way around.

It dawned on me that nowhere do you actually talk about what probability is. You seem to assume that the students already know that. In the very start of the first video it says,

“What I want to do in this video is give you at least a basic overview of probability. Probability, a word that you’ve probably heard a lot of and you are probably just a little bit familiar with it. Hopefully this will get you a little deeper understanding.”

Later in the video there is a section on the idea of large numbers of repetitions, which is one way of understanding probability. But it really is a bit skimpy on why anyone would want to find or estimate a probability, and what the values actually mean. But it was ok.

The first video was about single instances – one toss of a coin or one roll of a die. Then the second video showed you how to answer the questions in the exercises, which involved two dice. This seemed ok, if rather a sudden jump from the first video. Sadly both of these examples perpetuate the common misconception that if there are, say, 6 alternative outcomes, they will necessarily be equally likely.

Exercises

Then we get to some exercises called “Probability Space” , which is not an enormously helpful heading. But my main quest was to have a go at the exercises, so that is what I did. And that was not a good thing. The exercises were not stepped, but started right away with an example involving two dice and the phrase “at least one of”. There was meant to be a graphic to help me, but instead I had the message “scratchpad not available”. I will summarise my concerns about the exercises at the end of my letter. I clicked on a link to a video that wasn’t listed on the left, called Probability Space and got a different kind of video.

This video was better in that it had moving pictures and a script. But I have problems with gambling in videos like this. There are some cultures in which gambling is not acceptable. The other problem I have is with the term  “exact probability”, which was used several times. What do we mean by “exact probability”? How does he know it is exact? I think this sends the wrong message.

Then on to the next videos which were worked examples, entitled “Example: marbles from a bag, Example: Picking a non-blue marble, Example: Picking a yellow marble.” Now I understand that you don’t want to scare students with terminology too early, but I would have thought it helpful to call the second one, “complementary events, picking a non-blue marble”. That way if a student were having problems with complementary events in exercises from school, they could find their way here. But then I’m not sure who your audience is. Are you sure who your audience is?

The first marble video was ok, though the terminology was sloppy.

The second marble video, called “Example: picking a non-blue marble”, is glacially slow. There is a point, I guess in showing students how to draw a bag and marbles, but… Then the next example is of picking numbers at random. Why would we ever want to do this? Then we come to an example of circular targets. This involves some problem-solving regarding areas of circles, and cancelling out fractions including pi. What is this about? We are trying to teach about probablity so why have you brought in some complication involving the area of a circle?

The third marble video attempts to introduce the idea of events, but doesn’t really. By trying not to confuse with technical terms, the explanation is more confusing.

Now onto some more exercises. The Khan model is that you have to get 5 correct in a row in order to complete an exercise. I hope there is some sensible explanation for this, because it sure would drive me crazy to have to do that. (As I heard expressed on Twitter)

What are circular targets doing in with basic probability?

The first example is a circular target one.  I SO could not be bothered working out the area stuff so I used the hints to find the answer so I could move onto a more interesting example. The next example was finding the probability of a rolling a 4 from a fair six sided die. This is trivial, but would have been not a bad example to start with. Next question involve three colours of marbles, and finding the probability of not green. Then another dart-board one. Sigh. Then another dart board one. I’m never going to find out what happens if I get five right in a row if I don’t start doing these properly. Oh now – it gave me circumference. SO can’t be bothered.

And that was the end of Basic probability. I never did find out what happens if I get five correct in a row.

Venn diagrams

The next topic is called “Venn diagrams and adding probabilities “. I couldn’t resist seeing what you would do with a Venn diagram. This one nearly reduced me to tears.

As you know by now, I have an issue with gambling, so it will come as no surprise that I object to the use of playing cards in this example. It makes the assumption that students know about playing cards. You do take one and a half minutes to explain the contents of a standard pack of cards.  Maybe this is part of the curriculum, and if so, fair enough. The examples are standard – the probability of getting a Jack of Hearts etc. But then at 5:30 you start using Venn diagrams. I like Venn diagrams, but they are NOT good for what you are teaching at this level, and you actually did it wrong. I’ve put a comment in the feedback section, but don’t have great hopes that anything will change. Someone else pointed this out in the feedback two years ago, so no – it isn’t going to change.

Khan Venn diagram

This diagram is misleading, as is shown by the confusion expressed in the questions from viewers. There should be a green 3, a red 12, and a yellow 1.

Now Venn diagrams seem like a good approach in this instance, but decades of experience in teaching and communicating complex probabilities has shown that in most instances a two-way table is more helpful. The table for the Jack of Hearts problem would look like this:

Jacks Not Jacks Total
Hearts 1 12 13
Not Hearts 3 36 39
Total 4 48 52

(Any teachers reading this letter – try it! Tables are SO much easier for problem solving than Venn diagrams)

But let’s get down to principles.

The principles of instruction that KA have not followed in the examples:

  • Start easy and work up
  • Be interesting in your examples – who gives a flying fig about two dice or random numbers?
  • Make sure the hardest part of the question is the thing you are testing. This is particularly violated with the questions involving areas of circles.
  • Don’t make me so bored that I can’t face trying to get five in a row and not succeed.

My point

Yes, I do have one. Mr Khan you clearly can’t be stopped, so can you please get some real teachers with pedagogical content knowledge to go over your materials systematically and make them correct. You have some money now, and you owe it to your benefactors to GET IT RIGHT. Being flippant and amateurish is fine for amateurs but you are now a professional, and you need to be providing material that is professionally produced. I don’t care about the production values – keep the stammers and “lellows” in there if you insist. I’m very happy you don’t have background music as I can’t stand it myself. BUT… PLEASE… get some help and make your videos and exercises correct and pedagogically sound.

Dr Nic

PS – anyone else reading this letter, take a look at the following videos for mathematics.

And of course I think my own Statistics Learning Centre videos are pretty darn good as well.

Other posts about concerns about Khan:

Another Open Letter to Sal ( I particularly like the comment by Michael Paul Goldenberg)

Breaking the cycle (A comprehensive summary of the responses to criticism of Khan

Statistics is not beautiful (sniff)

Statistics is not really elegant or even fun in the way that a mathematics puzzle can be. But statistics is necessary, and enormously rewarding. I like to think that we use statistical methods and principles to extract truth from data.

This week many of the high school maths teachers in New Zealand were exhorted to take part in a Stanford MOOC about teaching mathematics. I am not a high school maths teacher, but I do try to provide worthwhile materials for them, so I thought I would take a look. It is also an opportunity to look at how people with an annual budget of more than 4 figures produce on-line learning materials. So I enrolled and did the first lesson, which is about people’s attitudes to math(s) and their success or trauma that has led to those attitudes. I’m happy to say that none of this was new to me. I am rather unhappy that it would be new to anyone! Surely all maths teachers know by now that how we deal with students’ small successes and failures in mathematics will create future attitudes leading to further success or failure. If they don’t, they need to take this course. And that makes me happy – that there is such a course, on-line and free for all maths teachers. (As a side note, I loved that Jo, the teacher switched between the American “math” and the British/Australian/NZ “maths”).

I’ve only done the first lesson so far, and intend to do some more, but it seems to be much more about mathematics than statistics, and I am not sure how relevant it will be. And that makes me a bit sad again. (It was an emotional journey!)

Mathematics in its pure form is about thinking. It is problem solving and it can be elegant and so much fun. It is a language that transcends nationality. (Though I have always thought the Greeks get a rough deal as we steal all their letters for the scary stuff.) I was recently asked to present an enrichment lesson to a class of “gifted and talented” students. I found it very easy to think of something mathematical to do – we are going to work around our Rogo puzzle, which has some fantastic mathematical learning opportunities. But thinking up something short and engaging and realistic in the statistics realm is much harder. You can’t do real statistics quickly.

On my run this morning I thought a whole lot more about this mathematics/statistics divide. I have written about it before, but more in defense of statistics, and warning the mathematics teachers to stay away or get with the programme. Understanding commonalities and differences can help us teach better. Mathematics is pure and elegant, and borders on art. It is the purest science. There is little beautiful about statistics. Even the graphs are ugly, with their scattered data and annoying outliers messing it all up. The only way we get symmetry is by assuming away all the badly behaved bits. Probability can be a bit more elegant, but with that we are creeping into the mathematical camp.

English Language and English literature

I like to liken. I’m going to liken maths and stats to English language and English literature. I was good at English at school, and loved the spelling and grammar aspects especially. I have in my library a very large book about the English language, (The Cambridge encyclopedia of the English Language, by David Crystal) and one day I hope to read it all. It talks about sounds and letters, words, grammar, syntax, origins, meanings. Even to dip into, it is fascinating. On the other hand I have recently finished reading “The End of Your Life Book Club” by Will Schwalbe, which is a biography of his amazing mother, set around the last two years of her life as she struggles with cancer. Will and his mother are avid readers, and use her time in treatment to talk about books. This book has been an epiphany for me. I had forgotten how books can change your way of thinking, and how important fiction is. At school I struggled with the literature side of English, as I wanted to know what the author meant, and could not see how it was right to take my own meaning from a book, poem or work of literature.  I have since discovered post-modernism and am happy drawing my own meaning.

So what does this all have to do with maths and statistics? Well I liken maths to English language. In order to be good at English you need to be able to read and write in a functional way. You need to know the mechanisms. You need to be able to DO, not just observe. In mathematics, you need to be able to approach a problem in a mathematical way.  Conversely, to be proficient in literature, you do not need to be able to produce literature. You need to be able to read literature with a critical mind, and appreciate the ideas, the words, the structure. You do need to be able to write enough to express your critique, but that is a different matter from writing a novel.  This, to me is like being statistically literate – you can read a statistical report, and ask the right questions. You can make sense of it, and not be at the mercy of poorly executed or mendacious research. You can even write a summary or a critique of a statistical analysis. But you do not need to be able to perform the actual analysis yourself, nor do you need to know the exact mathematical theory underlying it.

Statistical Literacy?

Maybe there is a problem with the term “statistical literacy”. The traditional meaning of literacy includes being able to read and write – to consume and to produce – to take meaning and to create meaning. I’m not convinced that what is called statistical literacy is the same.

Where I’m heading with this, is that statistics is a way to win back the mathematically disenfranchised. If I were teaching statistics to a high school class I would spend some time talking about what statistics involves and how it overlaps with, but is not mathematics. I would explain that even people who have had difficulty in the past with mathematics, can do well at statistics.

The following table outlines the different emphasis of the two disciplines.

Mathematics Statistics
Proficiency with numbers is important Proficiency with numbers is helpful
Abstract ideas are important Concrete applications are important
Context is to be removed so that we can model the underlying ideas Context is crucial to all statistical analysis
You don’t need to write very much. Written expression in English is important

Another idea related to this is that of “magic formulas” or the cookbook approach. I don’t have a problem with cookbooks and knitting patterns. They help me to make things I could not otherwise. However, the more I use recipes and patterns, the more I understand the principles on which they are based. But this is a thought for another day.

The importance of being wrong

We don’t like to think we are wrong

One of the key ideas in statistics is that sometimes we will be wrong. When we report a 95% confidence interval, we will be wrong 5% of the time. Or in other words, about 1 in 20 of 95% confidence intervals will not contain the population parameter we are attempting to estimate. That is how they are defined. The thing is, we always think we are part of the 95% rather than the 5%. Mostly we will be correct, but if we do enough statistical analysis, we will almost definitely be wrong at some point. However, human nature is such that we tend to think it will be someone else. There is also a feeling of blame associated with being wrong. The feeling is that if we have somehow missed the true value with our confidence interval, it must be because we have made a mistake. However, this is not true. In fact we MUST be wrong about 5% of the time, or our interval is too big, and not really a 95% confidence interval.

The term “margin of error” appears with increasing regularity as elections approach and polling companies are keen to make money out of sooth-saying. The common meaning of the margin of error is half the width of a 95% confidence interval. So if we say the margin of error is 3%, then about one time in twenty, the true value of the proportion will actually be more than 3% away from the reported sample value.

What doesn’t help is that we seldom do know if we are correct or not. If we knew the real population value we wouldn’t be estimating it. We can contrive situations where we do know the population but pretend we don’t. If we do this in our teaching, we need to be very careful to point out that this doesn’t normally happen, but does in “classroom world” only. (Thanks to MD for this useful term.) General elections can give us an idea of being right or wrong after the event, but even then the problem of non-sampling error is conflated with sampling error. When opinion polls turn out to miss the mark, we tend to think of the cause as being due to poor sampling, or people changing their minds, or all number of imaginative explanations rather than simple, unavoidable sampling error.

So how do we teach this in such a way that it goes beyond school learning and is internalised for future use as efficient citizens?

Teaching suggestions

I have two suggestions. The first is a series of True/False statements that can be used in a number of ways. I have them as part of on-line assessment, so that the students are challenged by them regularly. They could be well used in the classroom as part of a warm-up exercise at the start of a lesson. Students can write their answers down or vote using hands.

Here are some examples of True/False statements (some of which could lead to discussion):

  1. You never know if your confidence interval contains the true population value.
  2. If you make your confidence interval wide enough you can be sure that you contain the true population value.
  3. A confidence interval tells us where we are pretty sure the sample statistic lies.
  4. It is better to have a narrow confidence interval than a wide one, as it gives us more certain information, even though it is more likely to be wrong.
  5. If your study involves twenty confidence intervals, then you know that exactly one of them will be wrong.
  6. If a confidence interval doesn’t contain the true population value, it is because it is one of the 5% that was calculated incorrectly.

You can check your answers at the end of this post.

Experiential exercise

The other teaching suggestion is for an experiential exercise. It requires a little set up time.

Make a set of cards for students with numbers on them that correspond to the point estimate of a proportion, or a score that will lead to that. (Specifications for a set of 35 cards representing the results from a proportion of 0.54 and 25 trials is given below).

Introduce the exercise as follows:
“I have a computer game, and have set the ratio of wins to losses at a certain value. Each of you has played 25 times, and the number of wins you have obtained will be on your card. It is really important that you don’t look at other people’s cards.”

Hand them out to the students. (If you have fewer than 35 in your class, it might be a good idea to make sure you include the cards with 8 and 19 in the set you use – sometimes it is ok to fudge slightly to teach a point.)
“Without getting information from anyone else, write down your best estimate of the true proportion of wins to losses in the game. Do you think you are correct? How close do you think you are to the true value?”

They will need to divide the number of wins by 25, which should not lead to any computational errors! The point is that they really can’t know how close their estimate is to the true value – and what does “correct” mean?

Then work out the margin of error for a sample of size 25, which in this case is estimated at 20%. Get the students to calculate their 95% confidence intervals, and decide if they have the interval that contains the true population value. Get them to commit one way or the other.

Now they can talk to each other about the values they have.

There are several ways you can go from here. You can tell them what the population proportion was from which the numbers were drawn (0.54). They can then see that most of them had confidence intervals that included the true value, and some didn’t. Or you can leave them wondering, which is a better lesson about real life. Or you can do one exercise where you do tell them and one where you don’t.

This is an area where probability and statistics meet. You could make a nice little binomial distribution problem out of being correct in a number of confidence intervals. There are potential problems with independence, so you need to be a bit careful with the wording. For example: Fifteen  students undertake separate statistical analyses on the topics of their choice, and construct 95% confidence intervals. What is the probability that all the confidence intervals are correct, in that they do contain the estimated population parameter? This is well modelled by a binomial distribution with n =15 and p=0.05. P(X=0)=0.46. And another interesting idea – what is the probability that two or more are incorrect? 0.17 is the answer. So there is a 17% chance that more than one of the confidence intervals does not contain the population parameter of interest.

This is an area that needs careful teaching, and I suspect that some teachers have only a sketchy understanding of the idea of confidence intervals and margins of error. It is so important to know that statistical results are meant to be wrong some of the time.

Answers: T,T,F, debatable, F,F.

Data for the 35 cards:

Number on card

8

9

10

11

12

13

14

15

16

17

18

19

Number of cards

1

1

2

3

5

5

6

5

3

2

1

1

Conceptualising Probability

The problem with probability is that it doesn’t really exist. Certainly it never exists in the past.

Probability is an invention we use to communicate our thoughts about how likely something is to happen. We have collectively agreed that 1 is a certain event and 0 is impossible. 0.5 means that there is just as much chance of something happening as not. We have some shared perception that 0.9 means that something is much more likely to happen than to not happen. Probability is also useful for when we want to do some calculations about something that isn’t certain. Often it is too hard to incorporate all uncertainty, so we assume certainty and put in some allowance for error.

Sometimes probability is used for things that happen over and over again, and in that case we feel we can check to see if our predication about how likely something is to happen was correct. The problem here is that we actually need things to happen a really big lot of times under the same circumstances in order to assess if we were correct. But when we are talking about the probability of a single event, that either will or won’t happen, we can’t test out if we were right or not afterwards, because by that time it either did or didn’t happen. The probability no longer exists.

Thus to say that there is a “true” probability somewhere in existence is rather contrived. The truth is that it either will happen or it won’t. The only way to know a true probability would be if this one event were to happen over and over and over, in the wonderful fiction of parallel universes. We could then count how many times it would turn out one way rather than another. At which point the universes would diverge!

However, for the interests of teaching about probability, there is the construct that there exists a “true probability” that something will happen.

Why think about probability?

What prompted these musings about probability was exploring the new NZ curriculum and companion documents, the Senior Secondary Guide and nzmaths.co.nz.

In Level 8 (last year of secondary school) of the senior secondary guide it says, “Selects and uses an appropriate distribution to solve a problem, demonstrating understanding of the relationship between true probability (unknown and unique to the situation), model estimates (theoretical probability) and experimental estimates.”

And at NZC level 3 (years 5 and 6 at Primary school!) in the Key ideas in Probability it talks about “Good Model, No Model and Poor Model” This statement is referred to at all levels above level 3 as well.

I decided I needed to make sense of these two conceptual frameworks: true-model-experimental and good-poor-no, and tie it to my previous conceptual framework of classical-frequency-subjective.

Here goes!

Delicious Mandarins

Let’s make this a little more concrete with an example. We need a one-off event. What is the probability that the next mandarin I eat will be delicious? It is currently mandarin season in New Zealand, and there is nothing better than a good mandarin, with the desired combination of sweet and sour, and with plenty of juice and a good texture. But, being a natural product, there is a high level of variability in the quality of mandarins, especially when they may have parted company with the tree some time ago.

There are two possible outcomes for my future event. The mandarin will be delicious or it will not. I will decide when I eat it. Some may say that there is actually a continuum of deliciousness, but for now this is not the case. I have an internal idea of deliciousness and I will know. I think back to my previous experience with mandarins. I think about a quarter are horrible, a half are nice enough and about a quarter are delicious (using the Dr Nic scale of mandarin grading). If the mandarin I eat next belongs to the same population as the ones in my memory, then I can predict that there is a 25% probability that the mandarin will be delicious.

The NZ curriculum talks about “true” probability which implies that any value I give to the probability is only a model. It may be a model based on empirical or experimental evidence. It can be based on theoretical probabilities from vast amounts of evidence, which has given us the normal distribution. The value may be only a number dredged up from my soul, which expresses the inner feeling of how likely it is that the mandarin will be delicious, based on several decades of experience in mandarin consumption.

More examples

Let us look at some more examples:

What is the probability that:

  • I will hear a bird on the way to work?
  • the flight home will be safe?
  • it will be raining when I get to Christchurch?
  • I will get a raisin in my first spoonful of muesli?
  • I will get at least one raisin in half of my spoonfuls of muesli?
  • the shower in my hotel room will be enjoyable?
  • I will get a rare Lego ® minifigure next time I buy one?

All of these events are probabilistic and have varying degrees of certainty and varying degrees of ease of modelling.

Easy to model Hard to model
Unlikely Get a rare Lego ® minifigure Raining in Christchurch
No idea Raisin in half my spoonfuls Enjoyable shower
Likely Raisin in first spoonful Bird, safe flight home

And as I construct this table I realise also that there are varying degrees of importance. Except for the flight home, none of those examples matter. I am hoping that a safe flight home has a probability extremely close to 1. I realise that there is a possibility of an incident. And it is difficult to model. But people have modelled air safety and the universal conclusion is that it is safer than driving. So I will take the probability and fly.

Conceptual Frameworks

How do we explain the different ways that probability has been described? I will now examine the three conceptual frameworks I introduced earlier, starting with the easiest.

Traditional categorisation

This is found in some form in many elementary college statistics text books. The traditional framework has three categories –classical or “a priori”, frequency or historical, and subjective.

Classical or “a priori” – I had thought of this as being “true” probability. To me, if there are three red and three white Lego® blocks in a bag and I take one out without looking, there is a 50% chance that I will get a red one. End of story. How could it be wrong? This definition is the mathematically interesting aspect of probability. It is elegant and has cool formulas and you can make up all sorts of fun examples using it. And it is the basis of gambling.

Frequency or historical – we draw on long term results of similar trials to gain information. For example we look at the rate of germination of a certain kind of seed by experiment, and that becomes a good approximation of the likelihood that any one future seed will germinate. And it also gives us a good estimate of what proportion of seeds in the future will germinate.

Subjective – We guess! We draw on our experience of previous similar events and we take a stab at it. This is not seen as a particularly good way to come up with a probability, but when we are talking about one off events, it is impossible to assess in retrospect how good the subjective probability estimate was. There is considerable research in the field of psychology about the human ability or lack thereof to attribute subjective probabilities to events.

In teaching the three part categorisation of sources of probability I had problems with the probability of rain. Where does that fit in the three categories? It uses previous experimental data to build a model, and current data to put into the model, and then a probability is produced. I decided that there is a fourth category, that I called “modelled”. But really that isn’t correct, as they are all models.

NZ curriculum terminology

So where does this all fit in the New Zealand curriculum pronouncements about probability? There are two conceptual frameworks that are used in the document, each with three categories as follows:

True, modelled, experimental

In this framework we start with the supposition that there exists somewhere in the universe a true probability distribution. We cannot know this. Our expressions of probability are only guesses at what this might be. There are two approaches we can take to estimate this “truth”. These two approaches are not independent of each other, but often intertwined.

One is a model estimate, based on theory, such as that the probability of a single outcome is the number of equally likely ways that it can occur over the number of possible outcomes. This accounts for the probability of a red brick as opposed to a white brick, drawn at random. Another example of a modelled estimate is the use of distributions such as the binomial or normal.

In addition there is the category of experimental estimate, in which we use data to draw conclusions about what it likely to happen. This is equivalent to the frequency or historical category above. Often modelled distributions use data from an experiment also. And experimental probability relies on models as well.  The main idea is that neither the modelled nor the experimental estimate of the “true” probability distribution is the true distribution, but rather a model of some sort.

Good model, poor model, no model

The other conceptual framework stated in the NZ curriculum is that of good model, poor model and no model, which relates to fitness for purpose. When it is important to have a “correct” estimate of a probability such as for building safety, gambling machines, and life insurance, then we would put effort into getting as good a model as possible. Conversely, sometimes little effort is required. Classical models are very good models, often of trivial examples such as dice games and coin tossing. Frequency models aka experimental models may or may not be good models, depending on how many observations are included, and how much the future is similar to the past. For example, a model of sales of slide rules developed before the invention of the pocket calculator will be a poor model for current sales. The ground rules have changed. And a model built on data from five observations of is unlikely to be a good model. A poor model is not fit for purpose and requires development, unless the stakes are so low that we don’t care, or the cost of better fitting is greater than the reward.

I have problems with the concept of “no model”. I presume that is the starting point, from which we develop a model or do not develop a model if it really doesn’t matter. In my examples above I include the probability that I will hear a bird on the way to work. This is not important, but rather an idle musing. I suspect I probably will hear a bird, so long as I walk and listen. But if it rains, I may not. As I am writing this in a hotel in an unfamiliar area I have no experience on which to draw. I think this comes pretty close to “no model”. I will take a guess and say the probability is 0.8. I’m pretty sure that I will hear a bird. Of course, now that I have said this, I will listen carefully, as I would feel vindicated if I hear a bird. But if I do not hear a bird, was my estimate of the probability wrong? No – I could assume that I just happened to be in the 0.2 area of my prediction. But coming back to the “no model” concept – there is now a model. I have allocated the probability of 0.8 to the likelihood of hearing a bird. This is a model. I don’t even know if it is a good model or a poor model. I will not be walking to work this way again, so I cannot even test it out for the future, and besides, my model was only for this one day, not for all days of walking to work.

So there you have it – my totally unscholarly musings on the different categorisations of probability.

What are the implications for teaching?

We need to try not to perpetuate the idea that probability is the truth. But at the same time we do not wish to make students think that probability is without merit. Probability is a very useful, and at times highly precise way of modelling and understanding the vagaries of the universe. The more teachers can use language that implies modelling rather than rules, the better. It is common, but not strictly correct to say, “This process follows a normal distribution”. As Einstein famously and enigmatically said, “God does not play dice”. Neither does God or nature use normal distribution values to determine the outcomes of natural processes. It is better to say, “this process is usefully modelled by the normal distribution.”

We can have learning experiences that help students to appreciate certainty and uncertainty and the modelling of probabilities that are not equi-probable. Thanks to the overuse of dice and coins, it is too common for people to assess things as having equal probabilities. And students need to use experiments.  First they need to appreciate that it can take a large number of observations before we can be happy that it is a “good” model. Secondly they need to use experiments to attempt to model an otherwise unknown probability distribution. What fun can be had in such a class!

But, oh mathematical ones, do not despair – the rules are still the same, it’s just the vigour with which we state them that has changed.

Comment away!

Post Script

In case anyone is interested, here are the outcomes which now have a probability of 1, as they have already occurred.

  • I will hear a bird on the way to work? Almost the minute I walked out the door!
  • the flight home will be safe? Inasmuch as I am in one piece, it was safe.
  • it will be raining when I get to Christchurch? No it wasn’t
  • I will get a raisin in my first spoonful of muesli? I did
  • I will get at least one raisin in half of my spoonfuls of muesli? I couldn’t be bothered counting.
  • the shower in my hotel room will be enjoyable? It was okay.
  • I will get a rare Lego minifigure next time I buy one? Still in the future!