Videos for teaching and learning statistics

It delights me that several of my statistics videos have been viewed over half a million times each. As well there is a stream of lovely comments (with the odd weird one) from happy viewers, who have found in the videos an answer to their problems.

In this post I will outline the main videos available on the Statistics Learning Centre YouTube Channel. They already belong to 24,000 playlists and lists of recommended resources in textbooks the world over. We are happy for teachers and learners to continue to link to them. Having them all in one place should make it easier for instructors to decide which ones to use in their courses.

Philosophy of the videos

Early on in my video production I wrote a series of blog posts about the videos. One was Effective multimedia teaching videos. The videos use graphics and audio to increase understanding and retention, and are mostly aimed at conceptual understanding rather than procedural understanding.

I also wrote a critique of Khan Academy videos, explaining why I felt they should be improved. Not surprisingly this ruffled a few feathers and remains my most commented on post. I would be thrilled if Khan had lifted his game, but I fear this is not the case. The Khan Academy pie chart video still uses an unacceptable example with too many and ordered categories. (January 2018)

Before setting out to make videos about confidence intervals, I critiqued the existing offerings in this post. At the time the videos were all about how to find a confidence interval, and not what it does. I suspect that may be why my video, Understanding Confidence Intervals, remains popular.

Note to instructors

You are welcome to link to our YouTube channel, and we get a tiny amount of money from people clicking on the ads. Please do NOT download the videos, as it is against YouTube rules, and deprives us of income. Note that we also have a separate pay-to-view channel, with considerably more videos, at higher resolution, with no advertising. Email us at info@statsLC.com for free trial access to these videos, with a view to providing them for your students on a subscription basis. If you have trouble with reliable internet access, we can also provide the videos as files for your network as part of the licence.

Introducing statistics

Understanding Summary Statistics 5:14 minutes

Why we need summary statistics and what each of them does. It is not about how to calculate the statistics, but what they mean. It uses the shoe example, which also appears in the PPDAC and OSEM videos.

Understanding Graphs 6:06 minutes

I briefly explains the use and interpretation of seven different types of statistical graph. They include the pictogram, bar chart, pie chart, dot plot, stem and leaf, scatterplot and time series.

 

Analysing and commenting on Graphical output using OSEM 7:13 minutes

This video teaches how to comment on graphs and other statistical output by using the acronym OSEM. It is especially useful for students in NCEA statistics classes in New Zealand, but many people everywhere can find OSEM awesome! We use the example of comparing the number of pairs of shoes men and women students say they own.

Variation and Sampling error 6:30 minutes

Statistical methods are necessary because of the existence of variation. Sampling error is one source of variation, and is often misunderstood. This video explains sampling error, along with natural variation, explainable variation and variation due to bias. There is an accompanying video on non-sampling error.

Sampling methods 4:54 minutes 500,000 views

This video describes five common methods of sampling in data collection – simple random, convenience, systematic, cluster and stratified. Each method has a helpful symbolic representation.

Types of data 6:20 minutes 600,000 views

The kind of graph and analysis we can do with specific data is related to the type of data it is. In this video we explain the different levels of data, with examples. This video is particularly popular at the start of courses.

Important Statistical concepts 5:34 minutes 50,000 views

This video does not receive the views it deserves, as it covers three really important ideas. Maybe I should split it up into three videos. The ideas are the difference between significance and usefulness, evidence and strength of effect, causation and association.

Other videos complementary to these, but not on YouTube are:

  • The statistical enquiry process
  • Understanding the Box Plot
  • Non-sampling error

Videos for teaching hypothesis testing

Understanding Statistical inference 6:46 minutes 40,000 views

The most difficult concept in statistics is that of inference. This video explains what statistical inference is and gives memorable examples. It is based on research around three concepts pivotal to inference – that the sample is likely to be a good representation of the population, that there is an element of uncertainty as to how well the sample represents the population, and that the way the sample is taken matters.

Understanding the p-value 4:43 minutes 500,000 views

This video explains how to use the p-value to draw conclusions from statistical output. It includes the story of Helen, making sure that the choconutties she sells have sufficient peanuts. It introduces the helpful phrase “p is low, null must go”.

Inference and evidence 3:34 minutes

This is a newer video, based on a little example I used in lectures to help students see the link between evidence and inference. Of course it involves chocolate.

Hypothesis tests 7:38 minutes 350,000 views

This entertaining video works step-by-step through a hypothesis test. Helen wishes to know whether giving away free stickers will increase her chocolate sales. This video develops the ideas from “Understanding the p-value”, giving more of the process of hypothesis testing. It is also complemented by the following video, that shows how to perform the analysis using Excel.

Two-means t-test in Excel 3:54 minutes 50,000 views

A step-by-step lesson on how to perform an independent samples t-test for difference of two means using the Data Analysis ToolPak in Excel. This is a companion video to Hypothesis tests, p-value, two means t-test.

Choosing which statistical test to use 9:33 minutes 500,000 views

I am particularly proud of this video, and the way it links the different tests together. It took a lot of work to come up with this. First it outlines a process for thinking about the data, the sample and the thing you are trying to find out. Then it works through seven tests with scenarios based around Helen and the Choconutties. This video is particularly popular near the end of the semester, for tying together the different tests and applications.

 

Confidence Intervals

Understanding Confidence Intervals 4:02 minutes 500,000 views

This short video gives an explanation of the concept of confidence intervals, with helpful diagrams and examples. The emphasis is on what a confidence interval is and how it is used, rather than how they are calculated or derived.

Calculating the confidence interval for a mean using a formula 5:29 minutes 200,000 views

This video carries on from “Understanding Confidence Intervals” and introduces a formula for calculating a confidence interval for a mean. It uses graphics and animation to help understanding.

There are also videos pertinent to the New Zealand curriculum using bootstrapping and informal methods to find confidence intervals.

Probability

Introduction to Probability 2:54 minutes

This video explains what probability is and why we use it. It does NOT use dice, coins or balls in urns. It is the first in a series of six videos introducing basic probability with a conceptual approach. The other five videos can be accessed through subscription.

Understanding Random Variables 5:08 minutes 90,000 views

The idea of a random variable can be surprisingly difficult. In this video we help you learn what a random variable is, and the difference between discrete and continuous random variables. It uses the example of Luke and his ice cream stand.

Understanding the Normal Distribution 7:44 minutes

In this video we explain the characteristics of the normal distribution, and why it is so useful as a model for real-life entities.

There are also two other videos about random variables, discrete and continuous.

Risk and Screening 7:54 minutes

This video explains about risk and screening, and shows how to calculate and express rates of false positives and false negatives. An imaginary disease, “Earpox” is used for the examples.

Other videos

Designing a Questionnaire 5:23 minutes 40,000 views

This was written specifically to support learning in Level 1 NCEA in the NZ school system but is relevant for anyone needing to design a questionnaire. There is a companion video on good and bad questions.

Line-fitting and regression

Scatterplots in Excel 5:17 minutes

The first step in doing a regression in Excel is to fit the line using a Scatter plot. This video shows how to do this, illustrated by the story of Helen and the effect of temperature on her sales of choconutties

Regression in Excel 6:27 minutes

This video explains Regression and how to perform regression in Excel and interpret the output. The story of Helen and her choconutties continues. This follows on from Scatterplots in Excel and Understanding the p-value.

There are three videos introducing bivariate relationships in a more conceptual way.

There are also videos covering experimental design and randomisation, time series analysis and networks. In the pipeline is a video “understanding the Central Limit Theorem.”

Supporting our endeavours

As explained in a previous post, Lessons for a budding Social Enterprise, Statistics Learning Centre is a social enterprise, with our aim to build a world of mathematicians and enable people to make intelligent use of statistics. Though we get some income from YouTube videos, it does not support the development of more videos. If you would like to help us to create further videos contact us to discuss subscriptions, sponsorship, donations and advertising possibilities. info@statsLC.com or n.petty@statsLC.com.

Advertisements

Play and learning mathematics and statistics

The role of play in learning

I have been reading further about teaching mathematics and came across this interesting assertion:

Play, understood as something frivolous, opposed to work, off-task behaviour, is not welcomed into most mathematics classrooms. But play is exactly what is needed. It is only play that can entice us to the type of repetition that is needed to learn how to inhabit the mathematical landscape and how to create new mathematics.
Friesen(2000) – unpublished thesis, cited in Stordy, Children Count, (2015)

Play and practice

It is an appealing idea that as children play, they have opportunities to engage in repetition that is needed in mastering some mathematical skills. The other morning I decided to do some exploration of prime numbers and factorising even before I got out of bed. (Don’t judge me!). It was fun, and I discovered some interesting properties, and came up with a way of labelling numbers as having two, three and more dimensions. 12 is a three dimensional number, as is 20, whereas 35 and 77 are good examples of two dimensional numbers. As I was thus playing on my own, I was aware that it was practising my tables and honing my ability to think multiplicatively. In this instance the statement from Friesen made sense. I admit I’m not sure what it means to “create new mathematics”. Perhaps that is what I was doing with my 2 and 3 dimensional numbers.

You may be wondering what this has to do with teaching statistics to adults. Bear with…

Traditional vs recent teaching methods for mathematics

Today on Twitter, someone asked what to do when a student says that they like being shown what to do, and then practising on textbook examples. This is the traditional method for teaching mathematics, and is currently not seen as ideal among many maths teachers (particularly those who inhabit the MathTwitterBlogosphere or MTBoS, as it is called). There is strong support for a more investigative, socially constructed approach to learning and teaching mathematics.  I realise that as a learner, I was happy enough learning maths by being shown what to do and then practising. I suspect a large proportion of maths teachers also liked doing that. Khan Academy videos are wildly popular with many learners and far too many teachers because they perpetuate this procedural view of mathematics. So is the procedural approach wrong? I think what it comes down to is what we are trying to teach. Were I to teach mathematics again I would not use “show then practise” as my modus operandi. I would like to teach children to become mathematicians rather than mathematical technicians. For this reason, the philosophies and methods of Youcubed, Dan Meyer and other MTBoS bloggers have appeal.

Play and statistics

Now I want to turn my thoughts to statistics. Is there a need for more play in statistics? Can statistics be playful in the way that mathematics can be playful? Operations Research is just one game after another! Simulation, critical path, network analysis, travelling salesperson, knapsack problem? They are all big games. Probability is immensely playful, but what about statistical analysis? Can and should statistics be playful?

My first response is that there is no play in statistics. Statistics is serious and important, and deals with reality, not joyous abstract ideas like prime numbers and the Fibonacci series – and two and three dimensional numbers.

The excitement of a fresh set of data

But there is that frisson of excitement as you finally finish cleaning your database and a freshly minted set of variables and observations beckons to you, with SPSS, SAS or even Excel at your fingertips. A new set of data is a new journey of discovery. Of course a serious researcher has already worked out a methodical route through her hypotheses… maybe. Or do we mostly all fossick about looking for patterns and insights, growing more and more familiar with the feel of the data, as if we were squeezing it through our fingers? So yes – my experience of data exploration is playful. It is an adventure, with wrong turns, forgetting the path, starting again, finding something only to lose it again and finally saying “enough” and taking a break, not because the data has been exhausted, but because I am.

Writing the report is like cleaning up

Writing up statistical analysis is less exciting. It feels like picking up the gardening tools and putting them away after weeding the garden. Or cleaning the paintbrushes after creating a masterpiece. That was not one of my strengths – finishing and tidying up afterwards. The problem was that I felt I had finished when the original task had been completed – when the weeds had been pulled or the painting completed. In my view, cleaning and putting away the tools was an afterthought that dragged on after the completion of the task, and too often got ignored. Happily I have managed to change my behaviour by rethinking the nature of the weeding task. The weeding task is complete when the weeds are pulled and in the compost and the implements are resting clean and safe where they belong. Similarly a statistical analysis is not what comes before the report-writing, but is rather the whole process, ending when the report is complete, and the data is carefully stored away for another day. I wonder if that is the message we give our students – a thought for another post.

Can statistics be playful?

For I have not yet answered the question. Can statistics be playful in the way that mathematics can be playful? We want to embed play in order to make our task of repetition be more enjoyable, and learning statistics requires repetition, in order to develop skills and learn to differentiate the universal from the individual. One problem is that statistics can seem so serious. When we use databases about global warming, species extinction, cancer screening, crime detection, income discrepancies and similarly adult topics, it can seem almost blasphemous to be too playful about it.

I suspect that one reason our statistics videos on YouTube are so popular is because they are playful.

helen-has-attitude

Helen has an attitude problem

Helen has a real attitude problem and hurls snarky comments at her brother, Luke. The apples fall in an odd way, and Dr Nic pops up in strange places. This playfulness keeps the audience engaged in a way that serious, grown up themes may not. This is why we invented Ear Pox in our video about Risk and screening, because being playful about cancer is inappropriate.

Ear Pox is imaginary disease for which we are studying the screening risk.

Ear Pox is imaginary disease for which we are studying the screening risk.

Dragonistics data cards provide light-hearted data which yields worth-while results.

A set of 240 Dragonistics data cards provides light-hearted data which yields satisfying results.

When I began this post I did not intend to bring it around to the videos and the Dragonistics data cards, but I have ended up there anyway. Maybe that is the appeal of the Dragonistics data cards –  that they avoid the gravitas of true and real grown-up data, and maintain a playfulness that is more engaging than reality. There is a truthiness about them – the two species – green and red dragons are different enough to present as different animal species, and the rules of danger and breath-type make sense. But students may happily play with the dragon cards without fear of ignorance or even irreverence of a real-life context.

What started me thinking about play with regards to learning maths and statistics is our Cat Maths cards. There are just so many ways to play with them that I can see Cat Maths cards playing an integral part in a junior primary classroom. This is why we created them and want them to make their way into classrooms. Sadly, our Kickstarter campaign was unsuccessful, but we hope to work with an established game manufacturer to bring them to the market by the end of 2017.

We'd love your help.

We’d love your help.

Your thoughts about play and statistics

And maybe we need to be thinking a little more about the role of play in learning statistics – even for adults! What do you think? Can and should statistics be playful? And for what age group? Do you find statistical analysis fun?

 

The nature of mathematics and statistics and what it means to learn and teach them

I’ve been thinking lately….

Sometimes it pays to stop and think. I have been reading a recent textbook for mathematics teachers, Dianne Siemon et al, Teaching mathematics: foundations to middle years (2011). On page 47 the authors asked me to “Take a few minutes to write down your own views about the nature of mathematics, mathematics learning and mathematics teaching.” And bearing in mind I see statistics as related to, but not enclosed by mathematics, I decided to do the same for statistics as well. So here are my thoughts:

The nature of mathematics

Mathematicians love the elegance of mathematics

Mathematicians love the elegance of mathematics

Mathematics is a way of modelling and making sense of the world. Mathematics underpins scientific and commercial endeavours as well as everyday life. Mathematics is about patterns and proofs and problem structuring and solution finding. I used to think it was all about the answer, but now I think it is more about the process. I used to think that maths was predominantly an individual endeavour, but now I can see how there is a social or community aspect as well. I fear that too often students are getting a parsimonious view of mathematics, thinking it is only about numbers, and something they have to do on their own. I find my understanding of the nature of mathematics is rapidly changing as I participate in mathematics education at different ages and stages. I have also been influenced by the work of Jo Boaler.

To learn mathematics

My original idea of mathematics learning comes from my own successful experience of copying down notes from the board, listening to the teacher and doing the exercises in the textbook. I was not particularly fluent with my times-tables, but loved problem-solving. If I got something wrong, I was happy to try again until I nutted it out. Sometimes I even did recreational maths, like the time I enumerated all possible dice combinations in Risk to find out who had the advantage – attacker or defender. I always knew that it took practice to be good at mathematics. However I never really thought of mathematics as a social endeavour. I feel I missed out, now. From time to time I do have mathematical discussions with my colleague. It was an adventure inventing Rogo and then working out a solution method. Mathematics can be a social activity.

To teach mathematics

When I became a maths teacher I perpetuated the method that had worked for me, as I had not been challenged to think differently. I did like the ideas of mastery learning and personalised system of instruction. This meant that learners progressed to the next step only when they had mastered the previous one. I was a successful enough teacher and enjoyed my work.

Then as a university lecturer I had to work differently, and experimented. I had a popular personalised system of instruction quantitative methods course, relying totally on students working individually, at their own pace. I am happy that many of my students were successful in an area they had previously thought out of their reach. For some students it was the only subject they passed.

What I would do now

If I were to teach mathematics at school level again, I hope I would do things differently. I love the idea of “Number talks” and rich tasks which get students to think about different ways of doing things. I had often felt sad that there did not seem to be much opportunity to have discussions in maths, as things were either right or wrong. Now I see what fun we could have with open-ended tasks. Maths learning should be communal and loud and exciting, not solitary, quiet and routine. I have been largely constructivist in my teaching philosophy, but now I would like to try out social constructivist thinking.

Statistics

And what about statistics? At school in the 1970s I never learned more than the summary statistics and basic probability. At uni level it was bewildering, but I managed to get an A grade in a first year paper without understanding any of the basic principles. It wasn’t until I was doing my honours year in Operations Research and was working as a tutor in Statistical methods that things stared to come together – but even then I was not at home with statistical ideas and was happy to leave them behind when I graduated.

The nature of statistics

Statistics lives in the real world

Statistics lives in the real world

My views now on the nature of statistics are quite different. I believe statistical thinking is related to mathematical thinking, but with less certainty and more mess. Statistics is about models of reality, based on imperfect and incomplete data. Much of statistics is a “best guess” backed up by probability theory. And statistics is SO important to empowered citizenship. There are wonderful opportunities for discussion in statistics classes. I had a fun experience recently with a bunch of Year 13 Scholarship students in the Waikato. We had collected data from the students, having asked them to interpret a bar chart and a pie chart. There were some outliers in the data and I got them to suggest what we should do about them. There were several good suggestions and I let them discuss for a while then moved on. One asked me what the answer was and I said I really couldn’t say – any one of their suggestions was valid. It was a good teaching and learning moment. Statistics is full of multiple good answers, and often no single, clearly correct, answer.

Learning statistics

My popular Quantitative Methods for Business course was developed on the premise that learning statistics requires repeated exposure to similar analyses of multiple contexts. In the final module, students did many, many hypothesis tests, in the hope that it would gradually fall into place. That is what worked for me, and it did seem to work for many of the students. I think that is not a particularly bad way to learn statistics. But there are possibly better ways.

I do like experiential learning, and statistics is perfect for real life experiences. Perhaps the ideal way to learn statistics is by performing an investigation from start to finish, guided by a knowledgeable tutor. I say perhaps, because I have reservations about whether that is effective use of time. I wrote a blog post previously, suggesting that students need exposure to multiple examples in order to know what in the study is universal and what applies only to that particular context. So perhaps that is why students at school should be doing an investigation each year within a different context.

The nature of understanding

This does beg the question of what it means to learn or to understand anything. I hesitate to claim full understanding. Of anything. Understanding is progressive and multi-faceted and functional. As we use a technique we understand it more, such as hypothesis testing or linear programming. Understanding is progressive. My favourite quote about understanding is from Moore and Cobb, that “Mathematical understanding is not the only understanding.” I do not understand the normal distribution because I can read the Gaussian formula. I understand it from using it, and in a different way from a person who can derive it. In this way my understanding is functional. I have no need to be able to derive the Gaussian function for what I do, and the nature and level of my understanding of the normal distribution, or multiple regression, or bootstrapping is sufficient for me, for now.

Teaching statistics

I believe our StatsLC videos do help students to understand and learn statistics. I have put a lot of work into those explanations, and have received overwhelmingly positive feedback about the videos. However, that is no guarantee, as Khan Academy videos get almost sycophantic praise and I know that there are plenty of examples of poor pedagogy and even error in them. I have recently been reading from “Make it Stick”, which summarises theory based on experimental research on how people learn for recall and retention. I was delighted to find that the method we had happened upon in our little online quizzes was promoted as an effective method of reinforcing learning.

Your thoughts

This has been an enlightening exercise, and I recommend it to anyone teaching in mathematics or statistics. Read the first few chapters of a contemporary text on how to teach mathematics. Dianne Siemon et al, Teaching mathematics: foundations to middle years (2011) did it for me. Then “take a few minutes to write down your own views about the nature of mathematics, mathematics learning and mathematics teaching.” To which I add my own suggestion to think about the nature of statistics or operations research. Who knows what you will find out. Maybe you could put a few of your ideas down in the comments.

 

Teaching random variables and distributions

Why do we teach about random variables, and why is it so difficult to understand?

Probability and statistics go together pretty well and basic probability is included in most introductory statistics courses. Often maths teachers prefer the probability section as it is more mathematical than inference or exploratory data analysis. Both probability and statistics deal with the idea of uncertainty and chance, statistics mostly being about what has happened, and probability about what might happen. Probability can be, and often is, reduced to fun little algebraic puzzles, with little link to reality. But a sound understanding of the concept of probability and distribution, is essential to H.G. Wells’s “efficient citizen”.

When I first started on our series of probability videos, I wrote about the worth of probability. Now we are going a step further into the probability topic abyss, with random variables. For an introductory statistics course, it is an interesting question of whether to include random variables. Is it necessary for the future marketing managers of the world, the medical practitioners, the speech therapists, the primary school teachers, the lawyers to understand what a random variable is? Actually, I think it is. Maybe it is not as important as understanding concepts like risk and sampling error, but random variables are still important.

Random variables

Like many concepts in our area, once you get what a random variable is, it can be hard to explain. Now that I understand what a random variable is, it is difficult to remember what was difficult to understand about it. But I do remember feeling perplexed, trying to work out what exactly a random variable was. The lecturers use the term freely, but I remember (many decades ago) just not being able to pin down what a random variable is. And why it needed to exist.

To start with, the words “random variable” are difficult on their own. I have dedicated an entire post to the problems with “random”, and in the writing of it, discovered another inconsistency in the way that we use the word. When we are talking about a random sample, random implies equal likelihood. Yet when we talk about things happening randomly, they are not always equally likely. The word “variable” is also a problem. Surely all variables vary? Students may wonder what a non-random variable is – I know I did.

I like to introduce the idea of variables, as part of mathematical modelling. We can have a simple model:

Cost of event = hall hire + per capita charge x number of guests.

In this model, the hall hire and per capita charge are both constants, and the number of guests is a variable. The cost of the event is also a variable, and can be expressed as a function of the number of guests. And vice versa! Now if we know the number of guests, we can then calculate the cost of the event. But the number of guests may be uncertain – it could be something between 100 and 120. It is thus a random variable.

Another way to look at a random variable is to come from the other direction – start with the random part and add the variable part. When something random happens, sometimes the outcome is discrete and non-numerical, such as the sex of a baby, the colour of a tulip, or the type of fruit in a lunchbox. But when the random outcome is given a value, then it becomes a random variable.

Distributions

Pictorial representation of different distributions

Pictorial representation of different distributions

Then we come to distributions. I fear that too often distributions are taught in such a way that students believe that the normal or bell curve is a property guiding the universe, rather than a useful model that works in many different circumstances. (Rather like Adam Smith’s invisible hand that economists worship.) I’m pretty sure that is what I believed for many years, in my fog of disconnected statistical concepts. Somewhat telling, is the tendency for examples to begin with the words, “The life expectancy of a particular brand of lightbulb is normally distributed with a mean of …” or similar. Worse still, they don’t even mention the normal distribution, and simply say “The mean income per household in a certain state is $9500 with a standard deviation of $1750. The middle 95% of incomes are between what two values?” Students are left to assume that the normal distribution will apply, which in the second case is only a very poor approximation as incomes are likely to be skewed. This sloppy question-writing perpetuates the idea of the normal distribution as the rule that guides the universe.

Take a look at the textbook you use, and see what language it uses when asking questions about the normal distribution. The two examples above are from a popular AP statistics test preparation text.

I thought I’d better take a look at what Khan Academy did to random variables. I started watching the first video and immediately got hit with the flipping coin and rolling dice. No, people – this is not the way to introduce random variables! No one cares how many coins are heads. And even worse he starts with a zero/one random variable because we are only flipping one coin. And THEN he says that he could define a head as 100 and tail as 703 and…. Sorry, I can’t take it anymore.

A good way to introduce random variables

After LOTS of thinking and explaining, and trying stuff out, I have come up with what I think is a revolutionary and fabulous way to introduce random variables and distributions. To begin with we use a discrete empirical distribution to illustrate the idea of a random variable. The random variable models the number of ice creams per customer.

Then we use that discrete distribution to teach about expected value and standard deviation, and combining random variables.The third video introduces the idea of families of distributions, and shows how different distributions can be used to model the same random process.

Another unusual feature, is the introduction of the triangular distribution, which is part of the New Zealand curriculum. You can read here about the benefits of teaching the triangular distribution.

I’m pretty excited about this approach to teaching random variables and distributions. I’d love some feedback about it!

Introducing Probability

I have a guilty secret. I really love probability problems. I am so happy to be making videos about probability just now, and conditional probability and distributions and all that fun stuff. I am a little disappointed that we won’t be doing decision trees with Bayesian review, calculating EVPI. That is such fun, but I gave up teaching that some years ago.

The reason probability is fun is because it is really mathematics, and puzzles and logic. I love permutations and combinations too – there is something cool about working out how many ways something can happen.

So why should I feel guilty? Well, in all honesty I have to admit that there is very little need for most of that in a course about statistics at high-school or entry level university. When I taught statistical methods for management, we did some probability, but only from an applied viewpoint, and we never touched intersection and union signs or anything like that. We applied some distributions, but without much theoretical underpinning.

The GAISE (Guidelines for Assessment and Instruction in Statistics Education) Report says, “Teachers and students must understand that statistics and probability are not the same. Statistics uses probability, much as physics uses calculus.”

The question is, why do we teach probability – apart from the fact that it’s fun and makes a nice change from writing reports on time series and bivariate analysis, inference and experiments. The GAISE report also says, “Probability is an important part of any mathematical education. It is a part of mathematics that enriches the subject as a whole by its interactions with other uses of mathematics. Probability is an essential tool in applied mathematics and mathematical modeling. It is also an essential tool in statistics.”

The concept of probability is as important as it is misunderstood. It is vital to have an understanding of the nature of chance and variation in life, in order to be a well-informed, (or “efficient”) citizen. One area in which this is extremely important is in understanding risk and relative risk. When a person is told that their chances of dying of some rare disease have just doubled, it is important that they know that it may be because they have gone from one chance in a million to two chances in a million. Sure it has doubled, but it still is pretty trivial. An understanding of probability is also important in terms of gambling and resistance to the allures of games of chance. And more socially acceptable gambling, such as stockmarket trading, also requires an understanding of chance and variation.

The concept of probability is important, and a few rules of probability may help with understanding, but I suspect the mathematicians get carried away and create problems that are unlikely (probability close to zero) to ever occur in reality. Anything requiring a three-way Venn Diagram has moved from applied problem to logic puzzle.This is in stark contrast to the very applied data-driven approach used in teaching statistics in New Zealand.

Teaching Probability

The traditional approach to teaching probability is to start with the coin and the dice and the balls in the urns. As well as being mind-bogglingly boring and pointless, this also projects an artificial certainty about the probabilities, which is confusing when we start discussing models. If you look at the Khan Academy videos (but don’t) you will find trivial examples about coloured balls or sweets or strangely complex problems involving hitting a circular target. The traditional approach is also to teach probability as truth. “The probability of getting a boy is one-half”. What does that even mean?

I am currently reading the new Springer volume, Probabilistic Thinking, and intend to write a review and post it on this blog, if I can get through enough before my review copy expires. It is inspiring and surprisingly gripping (but I don’t think that is enough of a review to earn me a hard copy to keep.). There are many great ideas for teaching in it, that I hope to pass on in due time.

The New Zealand approach to teaching probability comes from a modelling perspective, right from the start. At level 1, the first two years of schooling, children are exploring chance situations, playing games with a chance element and describing possible outcomes. By years 5 and 6 they are assigning numeric values to the likelihood of an occurrence. They (in the curriculum) are being introduced to model estimates and experimental estimates of probability. Bearing in mind how difficult high school maths teachers are finding the new approach, I don’t have a lot of confidence that the primary teachers are equipped yet to make the philosophical changes, let alone enact them in the classroom.

Teaching Confidence Intervals

If you want your students to understand just two things about confidence intervals, what would they be?

What and what order

When making up a teaching plan for anything it is important to think about whom you are teaching, what it is you want them to learn, and what order will best achieve the most important desired outcomes. In my previous life as a university professor I mostly taught confidence intervals to business students, including MBAs. Currently I produce materials to help teach high school students. When teaching business students, I was aware that many of them had poor mathematics skills, and I did not wish that to get in the way of their understanding. High School students may well be more at home with formulas and calculations, but their understanding of the outside world is limited. Consequently the approaches for these two different students may differ.

Begin with the end in mind

I use the “all of the people, some of the time” principle when deciding on the approach to use in teaching a topic. Some of the students will understand most of the material, but most of the students will only really understand some of the material, at least the first time around. Statistics takes several attempts before you approach fluency. Generally the material students learn will be the material they get taught first, before they start to get lost. Therefore it is good to start with the important material. I wrote a post about this, suggesting starting at the very beginning is not always the best way to go. This is counter-intuitive to mathematics teachers who are often very logical and wish to take the students through from the beginning to the end.

At the start I asked this question – if you want your students to understand just two things about confidence intervals, what would they be?

To me the most important things to learn about confidence intervals are what they are and why they are needed. Learning about the formula is a long way down the list, especially in these days of computers.

The traditional approach to teaching confidence intervals

A traditional approach to teaching confidence intervals is to start with the concept of a sampling distribution, followed by calculating the confidence interval of a mean using the Z distribution. Then the t distribution is introduced. Many of the questions involve calculation by formula. Very little time is spent on what a confidence interval is and why we need them. This is the order used in many textbooks. The Khan Academy video that I reviewed in a previous post does just this.

A different approach to teaching confidence intervals

My approach is as follows:
Start with the idea of a sample and a population, and that we are using a sample to try to find out an unknown value from the population. Show our video about understanding a confidence interval. One comment on this video decried the lack of formulas. I’m not sure what formulas would satisfy the viewer, but as I was explaining what a confidence interval is, not how to get it, I had decided that formulas would not help.

The new New Zealand school curriculum follows a process to get to the use of formal confidence intervals. Previously the assessment was such that a student could pass the confidence interval section by putting values into formulas in a calculator. In the new approach, early high school students are given real data to play with, and are encouraged to suggest conclusions they might be able to draw about the population, based on the sample. Then in Year 12 they start to draw informal confidence intervals, based on the sample.
Then in Year 13, we introduce bootstrapping as an intuitively appealing way to calculate confidence intervals. Students use existing data to draw a conclusion about two medians.
In a more traditional course, you could instead use the normal-based formula for the confidence interval of a mean. We now have a video for that as well.

You could then examine the idea of the sampling distribution and the central limit theorem.

The point is that you start with getting an idea of what a confidence interval is, and then you find out how to find one, and then you start to find out the theory underpinning it. You can think of it as successive refinement. Sometimes when we see photos downloading onto a device, they start off blurry, and then gradually become clearer as we gain more information. This is a way to learn a complex idea, such as confidence intervals. We start with the big picture, and not much detail, and then gradually fill out the details of the how and how come of the calculations.

When do we teach the formulas?

Some teachers believe that the students need to know the formulas in order to understand what is going on. This is probably true for some students, but not all. There are many kinds of understanding, and I prefer a conceptual and graphical approaches. If formulas are introduced at the end of the topic, then the students who like formulas are satisfied, and the others are not alienated. Sometimes it is best to leave the vegetables until last! (This is not a comment on the students!)

For more ideas about teaching confidence intervals see other posts:
Good, bad and wrong videos about confidence intervals
Confidence Intervals: informal, traditional, bootstrap
Why teach resampling

Those who can, teach statistics

The phrase I despise more than any in popular use (and believe me there are many contenders) is “Those who can, do, and those who can’t, teach.” I like many of the sayings of George Bernard Shaw, but this one is dismissive, and ignorant and born of jealousy. To me, the ability to teach something is a step higher than being able to do it. The PhD, the highest qualification in academia, is a doctorate. The word “doctor” comes from the Latin word for teacher.

Teaching is a noble profession, on which all other noble professions rest. Teachers are generally motivated by altruism, and often go well beyond the requirements of their job-description to help students. Teachers are derided for their lack of importance, and the easiness of their job. Yet at the same time teachers are expected to undo the ills of society. Everyone “knows” what teachers should do better. Teachers are judged on their output, as if they were the only factor in the mix. Yet how many people really believe their success or failure is due only to the efforts of their teacher?

For some people, teaching comes naturally. But even then, there is the need for pedagogical content knowledge. Teaching is not a generic skill that transfers seamlessly between disciplines. You must be a thinker to be a good teacher. It is not enough to perpetuate the methods you were taught with. Reflection is a necessary part of developing as a teacher. I wrote in an earlier post, “You’re teaching it wrong”, about the process of reflection. Teachers need to know their material, and keep up-to-date with ways of teaching it. They need to be aware of ways that students will have difficulties. Teachers, by sharing ideas and research, can be part of a communal endeavour to increase both content knowledge and pedagogical content knowledge.

There is a difference between being an explainer and being a teacher. Sal Khan, maker of the Khan Academy videos, is a very good explainer. Consequently many students who view the videos are happy that elements of maths and physics that they couldn’t do, have been explained in such a way that they can solve homework problems. This is great. Explaining is an important element in teaching. My own videos aim to explain in such a way that students make sense of difficult concepts, though some videos also illustrate procedure.

Teaching is much more than explaining. Teaching includes awakening a desire to learn and providing the experiences that will help a student to learn.  In these days of ever-expanding knowledge, a content-driven approach to learning and teaching will not serve our citizens well in the long run. Students need to be empowered to seek learning, to criticize, to integrate their knowledge with their life experiences. Learning should be a transformative experience. For this to take place, the teachers need to employ a variety of learner-focussed approaches, as well as explaining.

It cracks me up, the way sugary cereals are advertised as “part of a healthy breakfast”. It isn’t exactly lying, but the healthy breakfast would do pretty well without the sugar-filled cereal. Explanations really are part of a good learning experience, but need to be complemented by discussion, participation, practice and critique.  Explanations are like porridge – healthy, but not a complete breakfast on their own.

Why statistics is so hard to teach

“I’m taking statistics in college next year, and I can’t wait!” said nobody ever!

Not many people actually want to study statistics. Fortunately many people have no choice but to study statistics, as they need it. How much nicer it would be to think that people were studying your subject because they wanted to, rather than because it is necessary for psychology/medicine/biology etc.

In New Zealand, with the changed school curriculum that gives greater focus to statistics, there is a possibility that one day students will be excited to study stats. I am impressed at the way so many teachers have embraced the changed curriculum, despite limited resources, and late changes to assessment specifications. In a few years as teachers become more familiar with and start to specialise in statistics, the change will really take hold, and the rest of the world will watch in awe.

In the meantime, though, let us look at why statistics is difficult to teach.

  1. Students generally take statistics out of necessity.
  2. Statistics is a mixture of quantitative and communication skills.
  3. It is not clear which are right and wrong answers.
  4. Statistical terminology is both vague and specific.
  5. It is difficult to get good resources, using real data in meaningful contexts.
  6. One of the basic procedures, hypothesis testing, is counter-intuitive.
  7. Because the teaching of statistics is comparatively recent, there is little developed pedagogical content knowledge. (Though this is growing)
  8. Technology is forever advancing, requiring regular updating of materials and teaching approaches.

On the other hand, statistics is also a fantastic subject to teach.

  1. Statistics is immediately applicable to life.
  2. It links in with interesting and diverse contexts, including subjects students themselves take.
  3. Studying statistics enables class discussion and debate.
  4. Statistics is necessary and does good.
  5. The study of data and chance can change the way people see the world.
  6. Technlogical advances have put the power for real statistical analysis into the hands of students.
  7. Because the teaching of statistics is new, individuals can make a difference in the way statistics is viewed and taught.

I love to teach. These days many of my students are scattered over the world, watching my videos (for free) on YouTube. It warms my heart when they thank me for making something clear, that had been confusing. I realise that my efforts are small compared to what their teacher is doing, but it is great to be a part of it.

Open Letter to Khan Academy about Basic Probability

Khan academy probability videos and exercises aren’t good either

Dear Mr Khan

You have created an amazing resource that thousands of people all over the world get a lot of help from. Well done. Some of your materials are not very good, though, so I am writing this open letter in the hope that it might make some difference. Like many others, I believe that something as popular as Khan Academy will benefit from constructive criticism.

I fear that the reason that so many people like your mathematics videos so much is not because the videos are good, but because their experience in the classroom is so bad, and the curriculum is poorly thought out and encourages mechanistic thinking. This opinion is borne out by comments I have read from parents and other bloggers. The parents love you because you help their children pass tests.  (And these tests are clearly testing the type of material you are helping them to pass!) The bloggers are not so happy, because you perpetuate a type of mathematical instruction that should have disappeared by now. I can’t even imagine what the history teachers say about your content-driven delivery, but I will stick to what I know. (You can read one critique here)

Just over a year ago I wrote a balanced review of some of the Khan Academy videos about statistics. I know that statistics is difficult to explain – in fact one of the hardest subjects to teach. You can read my review here. I’ve also reviewed a selection of videos about confidence intervals, one of which was from Khan Academy. You can read the review here.

Consequently I am aware that blogging about the Khan Academy in anything other than glowing terms is an invitation for vitriol from your followers.

However, I thought it was about time I looked at the exercises that are available on KA, wondering if I should recommend them to high school teachers for their students to use for review. I decided to focus on one section, introduction to probability. I put myself in the place of a person who was struggling to understand probability at school.

Here is the verdict.

First of all the site is very nice. It shows that it has a good sized budget to use on graphics and site mechanics. It is friendly to get into. I was a bit confused that the first section in the Probability and Statistics Section is called “Independent and dependent events”. It was the first section though. The first section of this first section is called Basic Probability, so I felt I was in the right place. But then under the heading, Basic probability, it says, “Can I pick a red frog out of a bag that only contains marbles?” Now I have no trouble with humour per se, and some people find my videos pretty funny. But I am very careful to avoid confusing people with the humour. For an anxious student who is looking for help, that is a bit confusing.

I was excited to see that this section had five videos, and two sets of exercises. I was pleased about that, as I’ve wanted to try out some exercises for some time, particularly after reading the review from Fawn Nguyen on her experience with exercises on Khan Academy. (I suggest you read this – it’s pretty funny.)

So I watched the first video about probability and it was like any other KA video I’ve viewed, with primitive graphics and a stumbling repetitive narration. It was correct enough, but did not take into account any of the more recent work on understanding probability. It used coins and dice. Big yawn. It wastes a lot of time. It was ok. I do like that you have the interactive transcript so you can find your way around.

It dawned on me that nowhere do you actually talk about what probability is. You seem to assume that the students already know that. In the very start of the first video it says,

“What I want to do in this video is give you at least a basic overview of probability. Probability, a word that you’ve probably heard a lot of and you are probably just a little bit familiar with it. Hopefully this will get you a little deeper understanding.”

Later in the video there is a section on the idea of large numbers of repetitions, which is one way of understanding probability. But it really is a bit skimpy on why anyone would want to find or estimate a probability, and what the values actually mean. But it was ok.

The first video was about single instances – one toss of a coin or one roll of a die. Then the second video showed you how to answer the questions in the exercises, which involved two dice. This seemed ok, if rather a sudden jump from the first video. Sadly both of these examples perpetuate the common misconception that if there are, say, 6 alternative outcomes, they will necessarily be equally likely.

Exercises

Then we get to some exercises called “Probability Space” , which is not an enormously helpful heading. But my main quest was to have a go at the exercises, so that is what I did. And that was not a good thing. The exercises were not stepped, but started right away with an example involving two dice and the phrase “at least one of”. There was meant to be a graphic to help me, but instead I had the message “scratchpad not available”. I will summarise my concerns about the exercises at the end of my letter. I clicked on a link to a video that wasn’t listed on the left, called Probability Space and got a different kind of video.

This video was better in that it had moving pictures and a script. But I have problems with gambling in videos like this. There are some cultures in which gambling is not acceptable. The other problem I have is with the term  “exact probability”, which was used several times. What do we mean by “exact probability”? How does he know it is exact? I think this sends the wrong message.

Then on to the next videos which were worked examples, entitled “Example: marbles from a bag, Example: Picking a non-blue marble, Example: Picking a yellow marble.” Now I understand that you don’t want to scare students with terminology too early, but I would have thought it helpful to call the second one, “complementary events, picking a non-blue marble”. That way if a student were having problems with complementary events in exercises from school, they could find their way here. But then I’m not sure who your audience is. Are you sure who your audience is?

The first marble video was ok, though the terminology was sloppy.

The second marble video, called “Example: picking a non-blue marble”, is glacially slow. There is a point, I guess in showing students how to draw a bag and marbles, but… Then the next example is of picking numbers at random. Why would we ever want to do this? Then we come to an example of circular targets. This involves some problem-solving regarding areas of circles, and cancelling out fractions including pi. What is this about? We are trying to teach about probablity so why have you brought in some complication involving the area of a circle?

The third marble video attempts to introduce the idea of events, but doesn’t really. By trying not to confuse with technical terms, the explanation is more confusing.

Now onto some more exercises. The Khan model is that you have to get 5 correct in a row in order to complete an exercise. I hope there is some sensible explanation for this, because it sure would drive me crazy to have to do that. (As I heard expressed on Twitter)

What are circular targets doing in with basic probability?

The first example is a circular target one.  I SO could not be bothered working out the area stuff so I used the hints to find the answer so I could move onto a more interesting example. The next example was finding the probability of a rolling a 4 from a fair six sided die. This is trivial, but would have been not a bad example to start with. Next question involve three colours of marbles, and finding the probability of not green. Then another dart-board one. Sigh. Then another dart board one. I’m never going to find out what happens if I get five right in a row if I don’t start doing these properly. Oh now – it gave me circumference. SO can’t be bothered.

And that was the end of Basic probability. I never did find out what happens if I get five correct in a row.

Venn diagrams

The next topic is called “Venn diagrams and adding probabilities “. I couldn’t resist seeing what you would do with a Venn diagram. This one nearly reduced me to tears.

As you know by now, I have an issue with gambling, so it will come as no surprise that I object to the use of playing cards in this example. It makes the assumption that students know about playing cards. You do take one and a half minutes to explain the contents of a standard pack of cards.  Maybe this is part of the curriculum, and if so, fair enough. The examples are standard – the probability of getting a Jack of Hearts etc. But then at 5:30 you start using Venn diagrams. I like Venn diagrams, but they are NOT good for what you are teaching at this level, and you actually did it wrong. I’ve put a comment in the feedback section, but don’t have great hopes that anything will change. Someone else pointed this out in the feedback two years ago, so no – it isn’t going to change.

Khan Venn diagram

This diagram is misleading, as is shown by the confusion expressed in the questions from viewers. There should be a green 3, a red 12, and a yellow 1.

Now Venn diagrams seem like a good approach in this instance, but decades of experience in teaching and communicating complex probabilities has shown that in most instances a two-way table is more helpful. The table for the Jack of Hearts problem would look like this:

Jacks Not Jacks Total
Hearts 1 12 13
Not Hearts 3 36 39
Total 4 48 52

(Any teachers reading this letter – try it! Tables are SO much easier for problem solving than Venn diagrams)

But let’s get down to principles.

The principles of instruction that KA have not followed in the examples:

  • Start easy and work up
  • Be interesting in your examples – who gives a flying fig about two dice or random numbers?
  • Make sure the hardest part of the question is the thing you are testing. This is particularly violated with the questions involving areas of circles.
  • Don’t make me so bored that I can’t face trying to get five in a row and not succeed.

My point

Yes, I do have one. Mr Khan you clearly can’t be stopped, so can you please get some real teachers with pedagogical content knowledge to go over your materials systematically and make them correct. You have some money now, and you owe it to your benefactors to GET IT RIGHT. Being flippant and amateurish is fine for amateurs but you are now a professional, and you need to be providing material that is professionally produced. I don’t care about the production values – keep the stammers and “lellows” in there if you insist. I’m very happy you don’t have background music as I can’t stand it myself. BUT… PLEASE… get some help and make your videos and exercises correct and pedagogically sound.

Dr Nic

PS – anyone else reading this letter, take a look at the following videos for mathematics.

And of course I think my own Statistics Learning Centre videos are pretty darn good as well.

Other posts about concerns about Khan:

Another Open Letter to Sal ( I particularly like the comment by Michael Paul Goldenberg)

Breaking the cycle (A comprehensive summary of the responses to criticism of Khan

The flipped classroom

Back in the mid1980s I was a trainee teacher at a high school in Rotorua. My associate teacher commented that she didn’t like to give homework much of the time as the students tended to practise things wrong, thus entrenching bad habits away from her watchful gaze. She had  a very good point! Bad habits can easily be developed when practising solving equations, trigonometry, geometry.

Recently the idea of the “flipped classroom” has gained traction, particularly enabled by near universal access to internet technology in some schools or neighbourhoods. When one “flips” the classroom, the students spend their homework time learning content – watching a video or reading notes. Then the classroom time is used for putting skills to practice, interactive activities, group work, problem-solving – all active things that are better with the teacher around. Having a teacher stand at the front of the room and lecture for a large percentage of the time is not effective teaching practice.

I ws surprised at a teaching workshop to find that many of the teachers were not even aware of the concept of “flipping”. To me this is a case for Twitter as a form of professional development. To address this gap, I am writing about the flipped classroom, especially with regard to statistics and mathematics.

There are two important aspects to flipping – what the students do when they are not in class, and what students do when they are in class.

Work away from class

In theory, classroom “flipping” has always been possible. You could set students notes to read or sections of the textbook to study. In some schools and cultures this is successful, though it does presuppose a high level of literacy. Universities expect students to read, though my experience is that they avoid it if possible – unless they are taking Law, which of course means they can’t avoid it.

Technology has changed the landscape for flipping. With ready access to the internet it is feasible for video and other work to be set remotely for students. Sometimes teachers prepare the material themselves, and sometimes they may specify a YouTube video or similar to watch. This is not as easy as it may sound. As you can see from my critique of videos about confidence intervals, there is a lot of dross from which to extract the gold. And Khan Academy is no exception.

One big advantage of video over a live lecture, even if the video is merely a talking head, is that the student can control the pace and repeat parts that aren’t clear. My experience of lecturing to classes of several hundred students was that the experience was far from personal. I would set the pace to aim at the middle, as I’m sure most do. In later years I put all my lectures into short audio files with accompanying notes. Students could control the pace and repeat parts they didn’t understand. They could stop and think for a bit and do the exercises as I suggested, sometimes using Excel in parallel. They could quickly look through the notes to see if they even needed to listen to the audio. It was much more individualised.

Another advantage was that you can remove errors, stumbles, gaps and tighten up the experience. I’ve found a fifty minute lecture can be reduced to about half the time, in terms of the recording.

Despite this much more individual approach I was still expected to give lectures (that’s what lecturers do isn’t it?) until the Christchurch earthquakes made my mode of delivery expedient and we were able to stop physical lectures. The students could view the delivery of the material without coming to the university. They could then do exercises, also set up on the LMS, with instant feedback.

Work in the classroom

People tend to focus on what happens away from the classroom, when talking about flipped classroom. It is equally important to think hard about what happens in class. Having the teacher and peers there to help when working through problems in mathematics is better than being at a dead-end at home, with no one to help.  But week after week of turning up to class, working on numbered exercises from the textbooks doesn’t sound like much fun.

Taking the content delivery out of the classroom frees up the teacher for all sorts of different activities. It can be a challenge for teachers to change how they think about how to use the time. There are opportunities for more active learning, based on the grounding done on-line. In a mathematics or statistics classroom there is room for creativity and imagination. Debates, group work, competitions, games, looking for errors, peer review and peer-grading are all possibilities. If anyone thinks there is no room for imagination in the teaching of mathematics, they should take a look at the excellent blog by Fawn Nyugen, Finding ways to Nguyen students over.  I wish she had taught my sons. Or me. (Nguyen is pronounced “Win”)

I am currently working with teachers on teaching statistical report-writing. This is something that benefits from peer review and discussion. Students can work separately to write up results, and then read each other’s work. This is done in English and Social Science classes, and language classes. There is much we can learn from teachers in other disciplines.

Potential Problems

Students can also be resistant to change, and some coaching may be needed at the start of the year.

There is a big investment by teachers if they wish to create their own materials. Finding suitable materials on line can take longer than making your own. A team approach could help here, where teachers pool their resources and provide the “at home” resources and links for each other’s classes. I would be cautious not to try to do too much at once in implementing “flipped classroom”. It would probably be wise to start with just one class at a time.

Where internet access is not universal, there needs to be adaptations. It may be that the students can use school resources out of school time. Or students could take the material home on a memory stick.

Special needs

One issue to consider is the students who have special learning needs. In one Twitter discussion it was suggested that the flipped classroom is great because the student can learn the content when they have a helper (parent!) to assist. This is an admirable theory and I might have agreed had I not been on the other side. As a mother of a son with special needs, the thought of homework was often too much for me. The daily battle of life was enough without adding further challenge. In addition my son had been full-on all day and had little capacity for homework even if I had been willing. We need to avoid assuming ideal circumstances.

Try it!

Overall though, in appropriate circumstances, the concept of flipping has a lot going for it. It is always good to try new things.

If you never have a bad lesson or a failed new idea, you aren’t being daring enough!

Pedagogical Content Knowledge

Pedagogical content knowledge for Statistics

Pedagogical content knowledge means knowing how to teach a specific subject, discipline or context. There is a school of thought that the skill of teaching is transferable between subjects, so long as the teacher knows the content. However others argue that teaching strategies differ sufficiently across disciplines to create individual but overlapping bodies of knowledge, called pedagogical content knowledge. To me it is clear that different skills and approaches are needed in the teaching of different disciplines. The methods for teaching a foreign language differ largely from those for teaching history or science or cake decorating or jazz piano. There are also commonalities in all teaching, such as the need to build a relationship between the teacher and student, and building on students’ previous knowledge.

I first learned about the concept of “pedagogical content knowledge” in one of my favourite books – How People Learn: Brain, Mind, Experience and School. This book brings together research into how the brain works, and how people learn, in such a way that teachers can gain from it in their practice. Regarding pedagogical content knowledge, it states “Expert teachers know the kinds of difficulties that students are likely to face; they know how to tap into students’ existing knowledge in order to make new information meaningful; and they know how to assess their students’ progress.”

I fear that one of the reasons that the subject of statistics is not as popular as it deserves to be, is because almost all the teachers at all levels lack pedagogical content knowledge with respect to teaching statistics. I am not saying that the teachers are bad teachers, or ill-meaning, or unintelligent. I am saying that most teachers of statistics do not really know how to teach statistics.

Let us look at some different groups of teachers, starting with the most influential and consequently worst paid.

Primary (elementary) school teachers)

My experience of primary school teachers is that they generally are less comfortable teaching mathematics than reading and writing. Their knowledge and understanding of statistics ranges between trivial and incorrect. Their pedagogical content knowledge for statistics is pretty low. These teachers often teach incorrect graphing methods, and may well perpetuate the idea that probability relates to dice, coins and counters. It is not really their fault. There is such a broad curriculum at that level, that it must be challenging to cover all possibilities in their training. Having said that, a well-funded initiative in professional development could address this issue.

High school teachers

Mostly statistics at high school level  is taught by mathematics teachers, from a mathematical background rather than a statistical one. I have already written about the problems when mathematicians fail to treat statistics as an allied but separate discipline from mathematics. I was greatly heartened last week to meet with forty committed teachers of high school statistics who are embracing the new approach of the New Zealand curriculum toward statistics. They have seen how interesting the subject is and are helping students to make real progress in their learning. This is testament to the dedication and collaboration of the teachers themselves, and the efforts of bodies such as Census @ School and my own Statistics Learning Centre, which are helping to support these teachers. The support from the official channels appears criminally lacking, unco-ordinated, and at times even conflicting.

These teachers were at my workshop on teaching statistical report-writing, because they were aware of their own inadequacies in this area. (Though some were doing a fantastic job already). It is hardly surprising that they feel unprepared for teaching this material when their expertise has been in teaching trigonometry, algebra, measurement and calculus. The pedagogical content knowledge for teaching statistics is very different from teaching mathematics. Statistics is, compared with mathematics, an inexact science, where context is vitally important, and where different correct approaches will produce different numbers as answers to a problem. In statistics the words used are critical, and one word can change the meaning of the sentence completely.

Fortunately there is research undertaken on how better to teach statistics, and the body of pedagogical content knowledge is increasing. Another of my favourite books is “The Challenge of Developing Statistical Literacy, Reasoning and Thinking”, edited by Dani Ben-Zvi and Joan Garfield. This brings together the results of thinking and experimentation to improve the efficacy of statistics teaching. One problem identified by Garfield some years ago was that even students who received A passes in statistics often had a very poor understanding of even the most basic concepts of the subject. It is exciting to read the progress that is being made in developing strategies for teaching statistics in a way that promotes deep understanding that transfers to other problems and disciplines. It is also exciting to live in New Zealand where the findings of the research have been applied to the development of a national curriculum in statistics.

Khan academy

I’d just like to pop in a reference to Khan Academy because, sadly, it has a great influence. I believe that many of the mathematics Khan Academy videos are fairly well taught, in a “boy-next-door” sort of way. However the statistics videos perpetuate the mathematical view of statistics, as they are a product of an archaic curriculum. Khan has NO pedagogical content knowledge of statistics. This is abundantly clear in the approach and errors. I have covered this in earlier posts.

AP Statistics

Advanced Placement Statistics is an American invention of which I have only a tenuous understanding. It appears to be a subject taken at high school level, examined nationally and can count for credit at a tertiary institution. Consequently, though the level is of first year college level, it is taught by high school teachers, which may or may not be to the advantage of the students. I suspect the level of pedagogical content knowledge among the teachers is highly skewed with  a very large bulge at the low end and very thin tail to the high end. (To me the word skewed goes the wrong way, so I prefer to describe the outcome).

Higher education

Statistics at universities is taught by a wide range of people. Teaching assistants have the advantage of recent experience learning the material and may thus be better able to see the challenges of learning the discipline. There will be truly great teachers of statistics among them. Some instructors specialise in the teaching of statistics and help to advance the corporate body of pedagogical content knowledge. Some academics really don’t care about teaching, and just present the material as painlessly (to them) as possible before they head back to their research.

Developing pedagogical content knowledge

I fear I have stated a problem, with very little in the way of solution. Sometimes it is a good start to identify that the problem exists. Part of my aim in my workshop is to validate the efforts of teachers in what is an unfamiliar environment, and explain why they are feeling out of their depth. This diagnosis helps to remove the blame from the teacher, who are then smart enough, with a few suggestions, to work to develop a solution.

It is my intention that this blog is part of a solution. The aim is that through my musings and the comments of others we are able to encourage progress in the teaching of statistics in such a way that will thrill and excite the masses! Failing that, at least not put them off statistics altogether.