Teachers and resource providers – uneasy bedfellows

Trade stands and cautious teachers

It is interesting to provide a trade stand at a teachers’ conference. Some teachers are keen to find out about new things, and come to see how we can help them. Others studiously avoid eye-contact in the fear that we might try to sell them something. Trade stand holders regularly put sweets and chocolate out as “bait” so that teachers will approach close enough to engage. Maybe it gives the teachers an excuse to come closer? Either way it is representative of the uneasy relationship that “trade” has with salaried educators.

Money and education

Money and education have an uneasy relationship. For schools to function, they need considerable funding – always more than what they get. In New Zealand, and in many countries, education is predominantly funded by the state. Schools are built and equipped, teachers are paid and resources are purchased with money provided by the taxpayer. Extras are raised through donations from parents and fund-raising efforts. However, because it is not apparent that money is changing hands, schools are perceived as virtuous establishments, existing only because of the goodness of the teachers. This contrasts with the attitude to resource providers, who are sometimes treated as parasitic with their motives being all about the money. It is possible that some resource providers are in it just for the money, but it seems to me that there are richer seams to mine in health, sport, retail etc.

Statistics Learning Centre is a social enterprise

Statistics Learning Centre is a social enterprise. We fit in the fuzzy area between “not-for-profit” and commercial enterprise. We measure our success by the impact we are having in empowering teachers to teach statistics and all people to understand statistics. We need money in order to continue to make an impact. Statistics Learning Centre has made considerable contributions to the teaching and learning of statistics in New Zealand and beyond for several years. This post lists just some of the impact we have had.  We believe in what we are doing, and work hard so that our social enterprise is on a solid financial footing.

StatsLC empowers teachers

Soon after the change to the NCEA Statistics standards, there was a shortage of good quality practice external exams. Even the ones provided as official exemplars did not really fit the curriculum. Teachers approached us, requesting that we create practice exams that they could trust were correct and aligned to the curriculum. We did so in 2015 and 2016, at considerable personal effort and only marginal financial recompense. We see that as helping statistics to be better understood in schools and the wider community.

We, at Statistics Learning Centre, grasp at opportunities to teach teachers how to teach statistics better, to empower all teachers to teach statistics. Our workshops are well received, and we have regular attenders who know they will get value for their time. We use an inclusive, engaging approach, and participants have a good time. I believe in our resources – the videos, the quizzes, the data cards, the activities, the professional development. I believe that they are among the best you can get. So when I give workshops, I do talk about the resources. It would seem counter-productive for all concerned, not to mention contrived, to do otherwise. They are part of a full professional development session. Many mathematical associations have no trouble with this, and I love to go to conferences, and contribute.

I am aware that there are some commercial enterprises who wish to give commercial presentations at conferences. If their materials are not of a high standard, this can put the organisers in a difficult position. Consequently some organisations have a blanket ban on any presentations that reference any paid product. I feel this is a little unfortunate, as teachers miss out on worthwhile contributions. But I understand the problem.

The Open Market model – supply and demand

I believe that there is value in a market model for resources.  People have suggested that we should get the Government to fund access to Statistics Learning Centre resources for all schools. That would be delightful, and give us the freedom and time to create even better resources. But that would make it almost impossible for any other new provider, who may have an even better product, to get a look in. When such a monopoly occurs, it reduces the incentives for providers to keep improving.

Saving work for the teachers, and building on a product

Teachers want the best for their students, and have limited budgets. They may spend considerable amounts of time printing, cutting and laminating in order to provide teaching resources at a low cost. This was one of the drivers for producing our Dragonistics data cards – to provide at a reasonable cost, some ready-made, robust resources, so that teachers did not have to make their own. As it turned out we were able to provide interesting data with clear relationships, and engaging graphics so that we provide something more than just data turned into datacards.

Free resources

There are free resources available on the internet. Other resources are provided by teachers who are sharing what they have done while teaching their own students. Resources provided for free can be of a high pedagogical standard. Having a high production standard, however, can be prohibitively expensive for individual producers who are working in their spare time.  It can also be tricky for another teacher to know what is suitable, and a lot of time can be spent trying to find high quality, reliable resources.

Teachers and resource providers – a symbiotic relationship

Teachers need good resource providers. It makes sense for experts to create high quality resources, drawing on current thinking with regard to content specific pedagogy. These can support teachers, particularly in areas in which they are less confident, such as statistics. And they do need to be paid for their work.

It helps when people recognise that our materials are sound and innovative, when they give us opportunities to contribute and when they include us at the decision-making table. Let us know how we can help you, and in partnership we can become better bed-fellows.

What do you think?


(Note that this post is also being published on our blog: Building a Statistics Learning  Community, as I felt it was important,)


Data for teaching – real, fake, fictional

There is a push for teachers and students to use real data in learning statistics. In this post I am going to address the benefits and drawbacks of different sources of real data, and make a case for the use of good fictional data as part of a statistical programme.

Here is a video introducing our fictional data set of 180 or 240 dragons, so you know what I am referring to.

Real collected, real database, trivial, fictional

There are two main types of real data. There is the real data that students themselves collect and there is real data in a dataset, collected by someone else, and available in its entirety. There are also two main types of unreal data. The first is trivial and lacking in context and useful only for teaching mathematical manipulation. The second is what I call fictional data, which is usually based on real-life data, but with some extra advantages, so long as it is skilfully generated. Poorly generated fictional data, as often found in case studies, is very bad for teaching.


When deciding what data to use for teaching statistics, it matters what it is that you are trying to teach. If you are simply teaching how to add up 8 numbers and divide the result by 8, then you are not actually doing statistics, and trivial fake data will suffice. Statistics only exists when there is a context. If you want to teach about the statistical enquiry process, then having the students genuinely involved at each stage of the process is a good idea. If you are particularly wanting to teach about fitting a regression line, you generally want to have multiple examples for students to use. And it would be helpful for there to be at least one linear relationship.

I read a very interesting article in “Teaching Children Mathematics” entitled, “Practıcal Problems: Using Literature to Teach Statistics”. The authors, Hourigan and Leavy, used a children’s book to generate the data on the number of times different characters appeared. But what I liked most, was that they addressed the need for a “driving question”. In this case the question was provided by a pre-school teacher who could only afford to buy one puppet for the book, and wanted to know which character appears the most in the story. The children practised collecting data as the story is read aloud. They collected their own data to analyse.

Let’s have a look at the different pros and cons of student-collected data, provided real data, and high-quality fictional data.

Collecting data

When we want students to experience the process of collecting real data, they need to collect real data. However real time data collection is time consuming, and probably not necessary every year. Student data collection can be simulated by a program such as The Islands, which I wrote about previously. Data students collect themselves is much more likely to have errors in it, or be “dirty” (which is a good thing). When students are only given clean datasets, such as those usually provided with textbooks, they do not learn the skills of deciding what to do with an errant data point. Fictional databases can also have dirty data, generated into it. The fictional inhabitants of The Islands sometimes lie, and often refuse to give consent for data collection on them.


One of the species of dragons included in our database

One of the species of dragons included in our database

I have heard that after a few years of school, graphs about cereal preference, number of siblings and type of pet get a little old. These topics, relating to the students, are motivating at first, but often there is no purpose to the investigation other than to get data for a graph.  Students need to move beyond their own experience and are keen to try something new. Data provided in a database can be motivating, if carefully chosen. There are opportunities to use databases that encourage awareness of social justice, the environment and politics. Fictional data must be motivating or there is no point! We chose dragons as a topic for our first set of fictional data, as dragons are interesting to boys and girls of most ages.

A meaningful  question

Here I refer again to that excellent article that talks about a driving question. There needs to be a reason for analysing the data. Maybe there is concern about food provided at the tuck shop, with healthy alternatives. Or can the question be tied into another area of the curriculum, such as which type of bean plant grows faster? Or can we increase the germination rate of seeds. The Census@school data has the potential for driving questions, but they probably need to be helped along. For existing datasets the driving question used by students might not be the same as the one (if any) driving the original collection of data. Sometimes that is because the original purpose is not ‘motivating’ for the students or not at an appropriate level. If you can’t find or make up a motivating meaningful question, the database is not appropriate. For our fictional dragon data, we have developed two scenarios – vaccinating for Pacific Draconian flu, and building shelters to make up for the deforestation of the island. With the vaccination scenario, we need to know about behaviour and size. For the shelter scenario we need to make decisions based on size, strength, behaviour and breath type. There is potential for a number of other scenarios that will also create driving questions.

Getting enough data

It can be difficult to get enough data for effects to show up. When students are limited to their class or family, this limits the number of observations. Only some databases have enough observations in them. There is no such problem with fictional databases, as you can just generate as much data as you need! There are special issues with regard to teaching about sampling, where you would want a large database with constrained access, like the Islands data, or the use of cards.


A problem with the data students collect is that it tends to be categorical, which limits the types of analysis that can be used. In databases, it can also be difficult to find measurement level data. In our fictional dragon database, we have height, strength and age, which all take numerical values. There are also four categorical variables. The Islands database has a large number of variables, both categorical and numerical.

Interesting Effects

Though it is good for students to understand that quite often there is no interesting effect, we would like students to have the satisfaction of finding interesting effects in the data, especially at the start. Interesting effects can be particularly exciting if the data is real, and they can apply their findings to the real world context. Student-collected-data is risky in terms of finding any noticeable relationships. It can be disappointing to do a long and involved study and find no effects. Databases from known studies can provide good effects, but unfortunately the variables with no effect tend to be left out of the databases, giving a false sense that there will always be effects. When we generate our fictional data, we make sure that there are the relationships we would like there, with enough interaction and noise. This is a highly skilled process, honed by decades of making up data for student assessment at university. (Guilty admission)


There are ethical issues to be addressed in the collection of real data from people the students know. Informed consent should be granted, and there needs to be thorough vetting. Young students (and not so young) can be damagingly direct in their questions. You may need to explain that it can be upsetting for people to be asked if they have been beaten or bullied. When using fictional data, that may appear real, such as the Islands data, it is important for students to be aware that the data is not real, even though it is based on real effects. This was one of the reasons we chose to build our first database on dragons, as we hope that will remove any concerns about whether the data is real or not!

The following table summarises the post.

Real data collected by the students Real existing database Fictional data
(The Islands, Kiwi Kapers, Dragons, Desserts)
Data collection Real experience Nil Sometimes
Dirty data Always Seldom Can be controlled
Motivating Can be Can be Must be!
Enough data Time consuming, difficult Hard to find Always
Meaningful question Sometimes. Can be trivial Can be difficult Part of the fictional scenario
Variables Tend towards nominal Often too few variables Generate as needed
Ethical issues Often Usually fine Need to manage reality
Effects Unpredictable Can be obvious or trivial, or difficult Can be managed

What does it mean to understand statistics?

It is possible to get a passing grade in a statistics paper by putting numbers into formulas and words into memorised phrases. In fact I suspect that this is a popular way for students to make their way through a required and often unwanted subject.

Most teachers of statistics would say that they would like students to understand what they are doing. This was a common sentiment expressed by participants in the excellent MOOC, Teaching statistics through data investigations (which is currently running again in January to May 2016.)


This makes me wonder what it means for students to understand statistics. There are many levels to understanding things. The concept of understanding has many nuances. If a person understands English, it means that they can use English with proficiency. If they are native speakers they may have little understanding of how grammar works, but they can still speak with correct grammar. We talk about understanding how a car works. I have no idea how a car works, apart from some idea that it requires petrol and the pistons go really, really fast. I can name parts of a car engine, such as distributor and drive shaft. But that doesn’t stop me from driving a car.

Understanding statistics

I propose that when we talk about teaching students to understand statistics, we want our students to know why they are doing something, and have an idea of how it works. Students also need to be fluent in the language of statistics. I would not expect any student of an introductory or high school statistics class to be able to explain how least squares regression works in terms of matrix algebra, but I would expect them to have an idea that the fitted line in a bivariate plot is a model that minimises the squared error terms. I’m not sure anyone needs to know why “degrees of freedom” are called that – or even really what degrees of freedom do. These days computer packages look after degrees of freedom for us. We DO need to understand what a p-value is, and what it is telling us. For many people it is not necessary to know how a p-value is calculated.

Ways to teach statistics

There are several approaches to teaching statistics. The approach needs to be tailored to the students and the context of the course. I prefer a hands-on, conceptual approach rather than a mathematical one. In current literature and practice there is a push for learning through investigations, often based around the statistical inquiry cycle. The problem with one long project is that students don’t get opportunities to apply principles in different situations, in such a way that will help in transfer of learning to other situations. There are some people who still teach statistics through the mathematical formulas, but I fear they are missing out on the opportunity to help students really enjoy statistics.

I do not propose to have all the answers, but we did discover one way to help students learn, alongside other methods. This approach is to use a short video, followed by a ten question true/false quiz. The quiz serves to reinforce and elaborate on concepts taught in the video, challenge students’ misconceptions, and help students be more familiar with the vocabulary and terminology of statistics. The quizzes we develop have multiple questions that randomise to give students the opportunity to try multiple times which seems to help understanding.

This short and entertaining video gives an illustration of how you can use videos and quizzes to help students learn difficult concepts.

And here is a link to a listing of all our videos and how you can get access to them. Statistics Learning Centre Videos

We have just started a newsletter letting people know of new products and hints for teaching. You can sign up here. Sign up for newsletter

Engaging students in learning statistics using The Islands.

Three Problems and a Solution

Modern teaching methods for statistics have gone beyond the mathematical calculation of trivial problems. Computers can enable large size studies, bringing reality to the subject, but this is not without its own problems.

Problem 1: Giving students experience of the whole statistical process

There are many reasons for students to learn statistics through running their own projects, following the complete statistical enquiry process, posing a problem, planning the data collection, collecting and cleaning the data, analysing the data and drawing conclusions that relate back to the original problem. Individual projects can be both time consuming and risky, as the quality of the report, and the resultant grade can be dependent on the quality of the data collected, which may be beyond the control of the student.

The Statistical Enquiry Cycle, which underpins the NZ statistics curriculum.

The Statistical Enquiry Cycle, which underpins the NZ statistics curriculum.

Problem 2: Giving students experience of different types of sampling

If students are given an existing database and then asked to sample from it, this can be confusing for student and sends the misleading message that we would not want to use all the data available. But physically performing a sample, based on a sampling frame, can be prohibitively time consuming.

Problem 3: Giving students experience conducting human experiments

The problem here is obvious. It is not ethical to perform experiments on humans simply to learn about performing experiments.

An innovative solution: The Islands virtual world.

I recently ran an exciting workshop for teachers on using The Islands. My main difficulty was getting the participants to stop doing the assigned tasks long enough to discuss how we might implement this in their own classrooms. They were too busy clicking around different villages and people, finding subjects of the right age and getting them to run down a 15degree slope – all without leaving the classroom.

The Island was developed by Dr Michael Bulmer from the University of Queensland and is a synthetic learning environment. The Islands, the second version, is a free, online, virtual human population created for simulating data collection.

The synthetic learning environment overcomes practical and ethical issues with applied human research, and is used for teaching students at many different levels. For a login, email james.baglin @ rmit.edu.au (without the spaces in the email address).

There are now approximately 34,000 inhabitants of the Islands, who are born, have families (or not) and die in a speeded up time frame where 1 Island year is equivalent to about 28 earth days. They each carry a genetic code that affects their health etc. The database is dynamic, so every student will get different results from it.

The Islanders

Some of the Islanders

Two magnificent features

To me the one of the two best features is the difficulty of acquiring data on individuals. It takes time for students to collect samples, as each subject must be asked individually, and the results recorded in a database. There is no easy access to the population. This is still much quicker than asking people in real-life (or “irl” as it is known on the social media.) It is obvious that you need to sample and to have a good sampling plan, and you need to work out how to record and deal with your data.

The other outstanding feature is the ability to run experiments. You can get a group of subjects and split them randomly into treatment and control groups. Then you can perform interventions, such as making them sit quietly or run about, or drink something, and then evaluate their performance on some other task. This is without requiring real-life ethical approval and informed consent. However, in a touch of reality the people of the Islands sometimes lie, and they don’t always give consent.

There are over 200 tasks that you can assign to your people, covering a wide range of topics. They include blood tests, urine tests, physiology, food and drinks, injections, tablets, mental tasks, coordination, exercise, music, environment etc. The tasks occur in real (reduced) time, so you are not inclined to include more tasks than are necessary. There is also the opportunity to survey your Islanders, with more than fifty possible questions. These also take time to answer, which encourages judicious choice of questions.


In the workshop we used the Islands to learn about sampling distributions. First each teacher took a sample of one male and one female and timed them running down a hill. We made (fairly awful) dotplots on the whiteboard using sticky notes with the individual times on them. Then each teacher took a sample and found the median time. We used very small samples of 7 each as we were constrained by time, but larger samples would be preferable. We then looked at the distributions of the medians and compared that with the distribution of our first sample. The lesson was far from polished, but the message was clear, and it gave a really good feel for what a sampling distribution is.

Within the New Zealand curriculum, we could also use The Islands to learn about bivariate relationships, sampling methods and randomised experiments.

In my workshop I had educators from across the age groups, and a primary teacher assured me that Year 4 students would be able to make use of this. Fortunately there is a maturity filter so that you can remove options relating to drugs and sexual activity.

James Baglin from RMIT University has successfully trialled the Island with high school students and psychology research methods students. The owners of the Island generously allow free access to it. Thanks to James Baglin, who helped me prepare this post.

Here are links to some interesting papers that have been written about the use of The Islands in teaching. We are excited about the potential of this teaching tool.

Michael Bulmer and J. Kimberley Haladyn (2011) Life on an Island: a simulated population to support student projects in statistics. Technology Innovations in Statistics Education, 5(1). 

Huynh, Baglin, Bedford (2014) Improving the attitudes of high school students towards statistics: An Island-based approach. ICOTS9

Baglin, Reece, Bulmer and Di Benedetto, (2013) Simulating the data investigative cycle in less than two hours: using a virtual human population, cloud collaboration and a statistical package to engage students in a quantitative research methods course.

Bulmer, M. (2010). Technologies for enhancing project assessment in large classes. In C. Reading (Ed.), Proceedings of the Eighth International Conference on Teaching Statistics, July 2010. Ljubljana, Slovenia. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/icots8/ICOTS8_5D3_BULMER.pdf

Bulmer, M., & Haladyn, J. K. (2011). Life on an Island: A simulated population to support student projects in statistics. Technology Innovations in Statistics Education, 5. Retrieved from http://escholarship.org/uc/item/2q0740hv

Baglin, J., Bedford, A., & Bulmer, M. (2013). Students’ experiences and perceptions of using a virtual environment for project-based assessment in an online introductory statistics course. Technology Innovations in Statistics Education, 7(2), 1–15. Retrieved from http://www.escholarship.org/uc/item/137120mt

Don’t teach significance testing – Guest post

The following is a guest post by Tony Hak of Rotterdam School of Management. I know Tony would love some discussion about it in the comments. I remain undecided either way, so would like to hear arguments.


It is now well understood that p-values are not informative and are not replicable. Soon null hypothesis significance testing (NHST) will be obsolete and will be replaced by the so-called “new” statistics (estimation and meta-analysis). This requires that undergraduate courses in statistics now already must teach estimation and meta-analysis as the preferred way to present and analyze empirical results. If not, then the statistical skills of the graduates from these courses will be outdated on the day these graduates leave school. But it is less evident whether or not NHST (though not preferred as an analytic tool) should still be taught. Because estimation is already routinely taught as a preparation for the teaching of NHST, the necessary reform in teaching will not require the addition of new elements in current programs but rather the removal of the current emphasis on NHST or the complete removal of the teaching of NHST from the curriculum. The current trend is to continue the teaching of NHST. In my view, however, teaching of NHST should be discontinued immediately because it is (1) ineffective and (2) dangerous, and (3) it serves no aim.

1. Ineffective: NHST is difficult to understand and it is very hard to teach it successfully

We know that even good researchers often do not appreciate the fact that NHST outcomes are subject to sampling variation and believe that a “significant” result obtained in one study almost guarantees a significant result in a replication, even one with a smaller sample size. Is it then surprising that also our students do not understand what NHST outcomes do tell us and what they do not tell us? In fact, statistics teachers know that the principles and procedures of NHST are not well understood by undergraduate students who have successfully passed their courses on NHST. Courses on NHST fail to achieve their self-stated objectives, assuming that these objectives include achieving a correct understanding of the aims, assumptions, and procedures of NHST as well as a proper interpretation of its outcomes. It is very hard indeed to find a comment on NHST in any student paper (an essay, a thesis) that is close to a correct characterization of NHST or its outcomes. There are many reasons for this failure, but obviously the most important one is that NHST a very complicated and counterintuitive procedure. It requires students and researchers to understand that a p-value is attached to an outcome (an estimate) based on its location in (or relative to) an imaginary distribution of sample outcomes around the null. Another reason, connected to their failure to understand what NHST is and does, is that students believe that NHST “corrects for chance” and hence they cannot cognitively accept that p-values themselves are subject to sampling variation (i.e. chance)

2. Dangerous: NHST thinking is addictive

One might argue that there is no harm in adding a p-value to an estimate in a research report and, hence, that there is no harm in teaching NHST, additionally to teaching estimation. However, the mixed experience with statistics reform in clinical and epidemiological research suggests that a more radical change is needed. Reports of clinical trials and of studies in clinical epidemiology now usually report estimates and confidence intervals, in addition to p-values. However, as Fidler et al. (2004) have shown, and contrary to what one would expect, authors continue to discuss their results in terms of significance. Fidler et al. therefore concluded that “editors can lead researchers to confidence intervals, but can’t make them think”. This suggests that a successful statistics reform requires a cognitive change that should be reflected in how results are interpreted in the Discussion sections of published reports.

The stickiness of dichotomous thinking can also be illustrated with the results of a more recent study of Coulson et al. (2010). They presented estimates and confidence intervals obtained in two studies to a group of researchers in psychology and medicine, and asked them to compare the results of the two studies and to interpret the difference between them. It appeared that a considerable proportion of these researchers, first, used the information about the confidence intervals to make a decision about the significance of the results (in one study) or the non-significance of the results (of the other study) and, then, drew the incorrect conclusion that the results of the two studies were in conflict. Note that no NHST information was provided and that participants were not asked in any way to “test” or to use dichotomous thinking. The results of this study suggest that NHST thinking can (and often will) be used by those who are familiar with it.

The fact that it appears to be very difficult for researchers to break the habit of thinking in terms of “testing” is, as with every addiction, a good reason for avoiding that future researchers come into contact with it in the first place and, if contact cannot be avoided, for providing them with robust resistance mechanisms. The implication for statistics teaching is that students should, first, learn estimation as the preferred way of presenting and analyzing research information and that they get introduced to NHST, if at all, only after estimation has become their routine statistical practice.

3. It serves no aim: Relevant information can be found in research reports anyway

Our experience that teaching of NHST fails its own aims consistently (because NHST is too difficult to understand) and the fact that NHST appears to be dangerous and addictive are two good reasons to immediately stop teaching NHST. But there is a seemingly strong argument for continuing to introduce students to NHST, namely that a new generation of graduates will not be able to read the (past and current) academic literature in which authors themselves routinely focus on the statistical significance of their results. It is suggested that someone who does not know NHST cannot correctly interpret outcomes of NHST practices. This argument has no value for the simple reason that it is assumed in the argument that NHST outcomes are relevant and should be interpreted. But the reason that we have the current discussion about teaching is the fact that NHST outcomes are at best uninformative (beyond the information already provided by estimation) and are at worst misleading or plain wrong. The point is all along that nothing is lost by just ignoring the information that is related to NHST in a research report and by focusing only on the information that is provided about the observed effect size and its confidence interval.


Coulson, M., Healy, M., Fidler, F., & Cumming, G. (2010). Confidence Intervals Permit, But Do Not Guarantee, Better Inference than Statistical Significance Testing. Frontiers in Quantitative Psychology and Measurement, 20(1), 37-46.

Fidler, F., Thomason, N., Finch, S., & Leeman, J. (2004). Editors Can Lead Researchers to Confidence Intervals, But Can’t Make Them Think. Statistical Reform Lessons from Medicine. Psychological Science, 15(2): 119-126.

This text is a condensed version of the paper “After Statistics Reform: Should We Still Teach Significance Testing?” published in the Proceedings of ICOTS9.


The Myth of Random Sampling

I feel a slight quiver of trepidation as I begin this post – a little like the boy who pointed out that the emperor has  no clothes.

Random sampling is a myth. Practical researchers know this and deal with it. Theoretical statisticians live in a theoretical world where random sampling is possible and ubiquitous – which is just as well really. But teachers of statistics live in a strange half-real-half-theoretical world, where no one likes to point out that real-life samples are seldom random.

The problem in general

In order for most inferential statistical conclusions to be valid, the sample we are using must obey certain rules. In particular, each member of the population must have equal possibility of being chosen. In this way we reduce the opportunity for systematic error, or bias. When a truly random sample is taken, it is almost miraculous how well we can make conclusions about the source population, with even a modest sample of a thousand. On a side note, if the general population understood this, and the opportunity for bias and corruption were eliminated, general elections and referenda could be done at much less cost,  through taking a good random sample.

However! It is actually quite difficult to take a random sample of people. Random sampling is doable in biology, I suspect, where seeds or plots of land can be chosen at random. It is also fairly possible in manufacturing processes. Medical research relies on the use of a random sample, though it is seldom of the total population. Really it is more about randomisation, which can be used to support causal claims.

But the area of most interest to most people is people. We actually want to know about how people function, what they think, their economic activity, sport and many other areas. People find people interesting. To get a really good sample of people takes a lot of time and money, and is outside the reach of many researchers. In my own PhD research I approximated a random sample by taking a stratified, cluster semi-random almost convenience sample. I chose representative schools of different types throughout three diverse regions in New Zealand. At each school I asked all the students in a class at each of three year levels. The classes were meant to be randomly selected, but in fact were sometimes just the class that happened to have a teacher away, as my questionnaire was seen as a good way to keep them quiet. Was my data of any worth? I believe so, of course. Was it random? Nope.

Problems people have in getting a good sample include cost, time and also response rate. Much of the data that is cited in papers is far from random.

The problem in teaching

The wonderful thing about teaching statistics is that we can actually collect real data and do analysis on it, and get a feel for the detective nature of the discipline. The problem with sampling is that we seldom have access to truly random data. By random I am not meaning just simple random sampling, the least simple method! Even cluster, systematic and stratified sampling can be a challenge in a classroom setting. And sometimes if we think too hard we realise that what we have is actually a population, and not a sample at all.

It is a great experience for students to collect their own data. They can write a questionnaire and find out all sorts of interesting things, through their own trial and error. But mostly students do not have access to enough subjects to take a random sample. Even if we go to secondary sources, the data is seldom random, and the students do not get the opportunity to take the sample. It would be a pity not to use some interesting data, just because the collection method was dubious (or even realistic). At the same time we do not want students to think that seriously dodgy data has the same value as a carefully collected random sample.

Possible solutions

These are more suggestions than solutions, but the essence is to do the best you can and make sure the students learn to be critical of their own methods.

Teach the best way, pretend and look for potential problems.

Teach the ideal and also teach the reality. Teach about the different ways of taking random samples. Use my video if you like!

Get students to think about the pros and cons of each method, and where problems could arise. Also get them to think about the kinds of data they are using in their exercises, and what biases they may have.

We also need to teach that, used judiciously, a convenience sample can still be of value. For example I have collected data from students in my class about how far they live from university , and whether or not they have a car. This data is not a random sample of any population. However, it is still reasonable to suggest that it may represent all the students at the university – or maybe just the first year students. It possibly represents students in the years preceding and following my sample, unless something has happened to change the landscape. It has worth in terms of inference. Realistically, I am never going to take a truly random sample of all university students, so this may be the most suitable data I ever get.  I have no doubt that it is better than no information.

All questions are not of equal worth. Knowing whether students who own cars live further from university, in general, is interesting but not of great importance. Were I to be researching topics of great importance, such safety features in roads or medicine, I would have a greater need for rigorous sampling.

So generally, I see no harm in pretending. I use the data collected from my class, and I say that we will pretend that it comes from a representative random sample. We talk about why it isn’t, but then we move on. It is still interesting data, it is real and it is there. When we write up analysis we include critical comments with provisos on how the sample may have possible bias.

What is important is for students to experience the excitement of discovering real effects (or lack thereof) in real data. What is important is for students to be critical of these discoveries, through understanding the limitations of the data collection process. Consequently I see no harm in using non-random, realistic sampled real data, with a healthy dose of scepticism.

Deterministic and Probabilistic models and thinking

The way we understand and make sense of variation in the world affects decisions we make.

Part of understanding variation is understanding the difference between deterministic and probabilistic (stochastic) models. The NZ curriculum specifies the following learning outcome: “Selects and uses appropriate methods to investigate probability situations including experiments, simulations, and theoretical probability, distinguishing between deterministic and probabilistic models.” This is at level 8 of the curriculum, the highest level of secondary schooling. Deterministic and probabilistic models are not familiar to all teachers of mathematics and statistics, so I’m writing about it today.


The term, model, is itself challenging. There are many ways to use the word, two of which are particularly relevant for this discussion. The first meaning is “mathematical model, as a decision-making tool”. This is the one I am familiar with from years of teaching Operations Research. The second way is “way of thinking or representing an idea”. Or something like that. It seems to come from psychology.

When teaching mathematical models in entry level operations research/management science we would spend some time clarifying what we mean by a model. I have written about this in the post, “All models are wrong.”

In a simple, concrete incarnation, a model is a representation of another object. A simple example is that of a model car or a Lego model of a house. There are aspects of the model that are the same as the original, such as the shape and ability to move or not. But many aspects of the real-life object are missing in the model. The car does not have an internal combustion engine, and the house has no soft-furnishings. (And very bumpy floors). There is little purpose for either of these models, except entertainment and the joy of creation or ownership. (You might be interested in the following video of the Lego Parisian restaurant, which I am coveting. Funny way to say Parisian!)

Many models perform useful functions. My husband works as a land-surveyor, and his work involves making models on paper or in the computer, of phenomenon on the land, and making sure that specified marks on the model correspond to the marks placed in the ground. The purpose of the model relates to ownership and making sure the sewers run in the right direction. (As a result of several years of earthquakes in Christchurch, his models are less deterministic than they used to be, and unfortunately many of our sewers ended up running the wrong way.)

Our world is full of models:

  • a map is a model of a location, which can help us get from place to place.
  • sheet music is a written model of the sound which can make a song
  • a bus timetable is a model of where buses should appear
  • a company’s financial reports are a model of one aspect of the company

Deterministic models

A deterministic model assumes certainty in all aspects. Examples of deterministic models are timetables, pricing structures, a linear programming model, the economic order quantity model, maps, accounting.

Probabilistic or stochastic models

Most models really should be stochastic or probabilistic rather than deterministic, but this is often too complicated to implement. Representing uncertainty is fraught. Some more common stochastic models are queueing models, markov chains, and most simulations.

For example when planning a school formal, there are some elements of the model that are deterministic and some that are probabilistic. The cost to hire the venue is deterministic, but the number of students who will come is probabilistic. A GPS unit uses a deterministic model to decide on the most suitable route and gives a predicted arrival time. However we know that the actual arrival time is contingent upon all sorts of aspects including road, driver, traffic and weather conditions.

Model as a way of thinking about something

The term “model” is also used to describe the way that people make sense out of their world. Some people have a more deterministic world model than others, contributed to by age, culture, religion, life experience and education. People ascribe meaning to anything from star patterns, tea leaves and moon phases to ease in finding a parking spot and not being in a certain place when a coconut falls. This is a way of turning a probabilistic world into a more deterministic and more meaningful world. Some people are happy with a probabilistic world, where things really do have a high degree of randomness. But often we are less happy when the randomness goes against us. (I find it interesting that farmers hit with bad fortune such as a snowfall or drought are happy to ask for government help, yet when there is a bumper crop, I don’t see them offering to give back some of their windfall voluntarily.)

Let us say the All Blacks win a rugby game against Australia. There are several ways we can draw meaning from this. If we are of a deterministic frame of mind, we might say that the All Blacks won because they are the best rugby team in the world.  We have assigned cause and effect to the outcome. Or we could take a more probabilistic view of it, deciding that the probability that they would win was about 70%, and that on the day they were fortunate.  Or, if we were Australian, we might say that the Australian team was far better and it was just a 1 in 100 chance that the All Blacks would win.

I developed the following scenarios for discussion in a classroom. The students can put them in order or categories according to their own criteria. After discussing their results, we could then talk about a deterministic and a probabilistic meaning for each of the scenarios.

  1. The All Blacks won the Rugby World Cup.
  2. Eri did better on a test after getting tuition.
  3. Holly was diagnosed with cancer, had a religious experience and the cancer was gone.
  4. A pet was given a homeopathic remedy and got better.
  5. Bill won $20 million in Lotto.
  6. You got five out of five right in a true/false quiz.

The regular mathematics teacher is now a long way from his or her comfort zone. The numbers have gone, along with the red tick, and there are no correct answers. This is an important aspect of understanding probability – that many things are the result of randomness. But with this idea we are pulling mathematics teachers into unfamiliar territory. Social studies, science and English teachers have had to deal with the murky area of feelings, values and ethics forever.  In terms of preparing students for a random world, I think it is territory worth spending some time in. And it might just help them find mathematics/statistics relevant!

Those who can, teach statistics

The phrase I despise more than any in popular use (and believe me there are many contenders) is “Those who can, do, and those who can’t, teach.” I like many of the sayings of George Bernard Shaw, but this one is dismissive, and ignorant and born of jealousy. To me, the ability to teach something is a step higher than being able to do it. The PhD, the highest qualification in academia, is a doctorate. The word “doctor” comes from the Latin word for teacher.

Teaching is a noble profession, on which all other noble professions rest. Teachers are generally motivated by altruism, and often go well beyond the requirements of their job-description to help students. Teachers are derided for their lack of importance, and the easiness of their job. Yet at the same time teachers are expected to undo the ills of society. Everyone “knows” what teachers should do better. Teachers are judged on their output, as if they were the only factor in the mix. Yet how many people really believe their success or failure is due only to the efforts of their teacher?

For some people, teaching comes naturally. But even then, there is the need for pedagogical content knowledge. Teaching is not a generic skill that transfers seamlessly between disciplines. You must be a thinker to be a good teacher. It is not enough to perpetuate the methods you were taught with. Reflection is a necessary part of developing as a teacher. I wrote in an earlier post, “You’re teaching it wrong”, about the process of reflection. Teachers need to know their material, and keep up-to-date with ways of teaching it. They need to be aware of ways that students will have difficulties. Teachers, by sharing ideas and research, can be part of a communal endeavour to increase both content knowledge and pedagogical content knowledge.

There is a difference between being an explainer and being a teacher. Sal Khan, maker of the Khan Academy videos, is a very good explainer. Consequently many students who view the videos are happy that elements of maths and physics that they couldn’t do, have been explained in such a way that they can solve homework problems. This is great. Explaining is an important element in teaching. My own videos aim to explain in such a way that students make sense of difficult concepts, though some videos also illustrate procedure.

Teaching is much more than explaining. Teaching includes awakening a desire to learn and providing the experiences that will help a student to learn.  In these days of ever-expanding knowledge, a content-driven approach to learning and teaching will not serve our citizens well in the long run. Students need to be empowered to seek learning, to criticize, to integrate their knowledge with their life experiences. Learning should be a transformative experience. For this to take place, the teachers need to employ a variety of learner-focussed approaches, as well as explaining.

It cracks me up, the way sugary cereals are advertised as “part of a healthy breakfast”. It isn’t exactly lying, but the healthy breakfast would do pretty well without the sugar-filled cereal. Explanations really are part of a good learning experience, but need to be complemented by discussion, participation, practice and critique.  Explanations are like porridge – healthy, but not a complete breakfast on their own.

Why statistics is so hard to teach

“I’m taking statistics in college next year, and I can’t wait!” said nobody ever!

Not many people actually want to study statistics. Fortunately many people have no choice but to study statistics, as they need it. How much nicer it would be to think that people were studying your subject because they wanted to, rather than because it is necessary for psychology/medicine/biology etc.

In New Zealand, with the changed school curriculum that gives greater focus to statistics, there is a possibility that one day students will be excited to study stats. I am impressed at the way so many teachers have embraced the changed curriculum, despite limited resources, and late changes to assessment specifications. In a few years as teachers become more familiar with and start to specialise in statistics, the change will really take hold, and the rest of the world will watch in awe.

In the meantime, though, let us look at why statistics is difficult to teach.

  1. Students generally take statistics out of necessity.
  2. Statistics is a mixture of quantitative and communication skills.
  3. It is not clear which are right and wrong answers.
  4. Statistical terminology is both vague and specific.
  5. It is difficult to get good resources, using real data in meaningful contexts.
  6. One of the basic procedures, hypothesis testing, is counter-intuitive.
  7. Because the teaching of statistics is comparatively recent, there is little developed pedagogical content knowledge. (Though this is growing)
  8. Technology is forever advancing, requiring regular updating of materials and teaching approaches.

On the other hand, statistics is also a fantastic subject to teach.

  1. Statistics is immediately applicable to life.
  2. It links in with interesting and diverse contexts, including subjects students themselves take.
  3. Studying statistics enables class discussion and debate.
  4. Statistics is necessary and does good.
  5. The study of data and chance can change the way people see the world.
  6. Technlogical advances have put the power for real statistical analysis into the hands of students.
  7. Because the teaching of statistics is new, individuals can make a difference in the way statistics is viewed and taught.

I love to teach. These days many of my students are scattered over the world, watching my videos (for free) on YouTube. It warms my heart when they thank me for making something clear, that had been confusing. I realise that my efforts are small compared to what their teacher is doing, but it is great to be a part of it.

Statistics is not beautiful (sniff)

Statistics is not really elegant or even fun in the way that a mathematics puzzle can be. But statistics is necessary, and enormously rewarding. I like to think that we use statistical methods and principles to extract truth from data.

This week many of the high school maths teachers in New Zealand were exhorted to take part in a Stanford MOOC about teaching mathematics. I am not a high school maths teacher, but I do try to provide worthwhile materials for them, so I thought I would take a look. It is also an opportunity to look at how people with an annual budget of more than 4 figures produce on-line learning materials. So I enrolled and did the first lesson, which is about people’s attitudes to math(s) and their success or trauma that has led to those attitudes. I’m happy to say that none of this was new to me. I am rather unhappy that it would be new to anyone! Surely all maths teachers know by now that how we deal with students’ small successes and failures in mathematics will create future attitudes leading to further success or failure. If they don’t, they need to take this course. And that makes me happy – that there is such a course, on-line and free for all maths teachers. (As a side note, I loved that Jo, the teacher switched between the American “math” and the British/Australian/NZ “maths”).

I’ve only done the first lesson so far, and intend to do some more, but it seems to be much more about mathematics than statistics, and I am not sure how relevant it will be. And that makes me a bit sad again. (It was an emotional journey!)

Mathematics in its pure form is about thinking. It is problem solving and it can be elegant and so much fun. It is a language that transcends nationality. (Though I have always thought the Greeks get a rough deal as we steal all their letters for the scary stuff.) I was recently asked to present an enrichment lesson to a class of “gifted and talented” students. I found it very easy to think of something mathematical to do – we are going to work around our Rogo puzzle, which has some fantastic mathematical learning opportunities. But thinking up something short and engaging and realistic in the statistics realm is much harder. You can’t do real statistics quickly.

On my run this morning I thought a whole lot more about this mathematics/statistics divide. I have written about it before, but more in defense of statistics, and warning the mathematics teachers to stay away or get with the programme. Understanding commonalities and differences can help us teach better. Mathematics is pure and elegant, and borders on art. It is the purest science. There is little beautiful about statistics. Even the graphs are ugly, with their scattered data and annoying outliers messing it all up. The only way we get symmetry is by assuming away all the badly behaved bits. Probability can be a bit more elegant, but with that we are creeping into the mathematical camp.

English Language and English literature

I like to liken. I’m going to liken maths and stats to English language and English literature. I was good at English at school, and loved the spelling and grammar aspects especially. I have in my library a very large book about the English language, (The Cambridge encyclopedia of the English Language, by David Crystal) and one day I hope to read it all. It talks about sounds and letters, words, grammar, syntax, origins, meanings. Even to dip into, it is fascinating. On the other hand I have recently finished reading “The End of Your Life Book Club” by Will Schwalbe, which is a biography of his amazing mother, set around the last two years of her life as she struggles with cancer. Will and his mother are avid readers, and use her time in treatment to talk about books. This book has been an epiphany for me. I had forgotten how books can change your way of thinking, and how important fiction is. At school I struggled with the literature side of English, as I wanted to know what the author meant, and could not see how it was right to take my own meaning from a book, poem or work of literature.  I have since discovered post-modernism and am happy drawing my own meaning.

So what does this all have to do with maths and statistics? Well I liken maths to English language. In order to be good at English you need to be able to read and write in a functional way. You need to know the mechanisms. You need to be able to DO, not just observe. In mathematics, you need to be able to approach a problem in a mathematical way.  Conversely, to be proficient in literature, you do not need to be able to produce literature. You need to be able to read literature with a critical mind, and appreciate the ideas, the words, the structure. You do need to be able to write enough to express your critique, but that is a different matter from writing a novel.  This, to me is like being statistically literate – you can read a statistical report, and ask the right questions. You can make sense of it, and not be at the mercy of poorly executed or mendacious research. You can even write a summary or a critique of a statistical analysis. But you do not need to be able to perform the actual analysis yourself, nor do you need to know the exact mathematical theory underlying it.

Statistical Literacy?

Maybe there is a problem with the term “statistical literacy”. The traditional meaning of literacy includes being able to read and write – to consume and to produce – to take meaning and to create meaning. I’m not convinced that what is called statistical literacy is the same.

Where I’m heading with this, is that statistics is a way to win back the mathematically disenfranchised. If I were teaching statistics to a high school class I would spend some time talking about what statistics involves and how it overlaps with, but is not mathematics. I would explain that even people who have had difficulty in the past with mathematics, can do well at statistics.

The following table outlines the different emphasis of the two disciplines.

Mathematics Statistics
Proficiency with numbers is important Proficiency with numbers is helpful
Abstract ideas are important Concrete applications are important
Context is to be removed so that we can model the underlying ideas Context is crucial to all statistical analysis
You don’t need to write very much. Written expression in English is important

Another idea related to this is that of “magic formulas” or the cookbook approach. I don’t have a problem with cookbooks and knitting patterns. They help me to make things I could not otherwise. However, the more I use recipes and patterns, the more I understand the principles on which they are based. But this is a thought for another day.

The importance of being wrong

We don’t like to think we are wrong

One of the key ideas in statistics is that sometimes we will be wrong. When we report a 95% confidence interval, we will be wrong 5% of the time. Or in other words, about 1 in 20 of 95% confidence intervals will not contain the population parameter we are attempting to estimate. That is how they are defined. The thing is, we always think we are part of the 95% rather than the 5%. Mostly we will be correct, but if we do enough statistical analysis, we will almost definitely be wrong at some point. However, human nature is such that we tend to think it will be someone else. There is also a feeling of blame associated with being wrong. The feeling is that if we have somehow missed the true value with our confidence interval, it must be because we have made a mistake. However, this is not true. In fact we MUST be wrong about 5% of the time, or our interval is too big, and not really a 95% confidence interval.

The term “margin of error” appears with increasing regularity as elections approach and polling companies are keen to make money out of sooth-saying. The common meaning of the margin of error is half the width of a 95% confidence interval. So if we say the margin of error is 3%, then about one time in twenty, the true value of the proportion will actually be more than 3% away from the reported sample value.

What doesn’t help is that we seldom do know if we are correct or not. If we knew the real population value we wouldn’t be estimating it. We can contrive situations where we do know the population but pretend we don’t. If we do this in our teaching, we need to be very careful to point out that this doesn’t normally happen, but does in “classroom world” only. (Thanks to MD for this useful term.) General elections can give us an idea of being right or wrong after the event, but even then the problem of non-sampling error is conflated with sampling error. When opinion polls turn out to miss the mark, we tend to think of the cause as being due to poor sampling, or people changing their minds, or all number of imaginative explanations rather than simple, unavoidable sampling error.

So how do we teach this in such a way that it goes beyond school learning and is internalised for future use as efficient citizens?

Teaching suggestions

I have two suggestions. The first is a series of True/False statements that can be used in a number of ways. I have them as part of on-line assessment, so that the students are challenged by them regularly. They could be well used in the classroom as part of a warm-up exercise at the start of a lesson. Students can write their answers down or vote using hands.

Here are some examples of True/False statements (some of which could lead to discussion):

  1. You never know if your confidence interval contains the true population value.
  2. If you make your confidence interval wide enough you can be sure that you contain the true population value.
  3. A confidence interval tells us where we are pretty sure the sample statistic lies.
  4. It is better to have a narrow confidence interval than a wide one, as it gives us more certain information, even though it is more likely to be wrong.
  5. If your study involves twenty confidence intervals, then you know that exactly one of them will be wrong.
  6. If a confidence interval doesn’t contain the true population value, it is because it is one of the 5% that was calculated incorrectly.

You can check your answers at the end of this post.

Experiential exercise

The other teaching suggestion is for an experiential exercise. It requires a little set up time.

Make a set of cards for students with numbers on them that correspond to the point estimate of a proportion, or a score that will lead to that. (Specifications for a set of 35 cards representing the results from a proportion of 0.54 and 25 trials is given below).

Introduce the exercise as follows:
“I have a computer game, and have set the ratio of wins to losses at a certain value. Each of you has played 25 times, and the number of wins you have obtained will be on your card. It is really important that you don’t look at other people’s cards.”

Hand them out to the students. (If you have fewer than 35 in your class, it might be a good idea to make sure you include the cards with 8 and 19 in the set you use – sometimes it is ok to fudge slightly to teach a point.)
“Without getting information from anyone else, write down your best estimate of the true proportion of wins to losses in the game. Do you think you are correct? How close do you think you are to the true value?”

They will need to divide the number of wins by 25, which should not lead to any computational errors! The point is that they really can’t know how close their estimate is to the true value – and what does “correct” mean?

Then work out the margin of error for a sample of size 25, which in this case is estimated at 20%. Get the students to calculate their 95% confidence intervals, and decide if they have the interval that contains the true population value. Get them to commit one way or the other.

Now they can talk to each other about the values they have.

There are several ways you can go from here. You can tell them what the population proportion was from which the numbers were drawn (0.54). They can then see that most of them had confidence intervals that included the true value, and some didn’t. Or you can leave them wondering, which is a better lesson about real life. Or you can do one exercise where you do tell them and one where you don’t.

This is an area where probability and statistics meet. You could make a nice little binomial distribution problem out of being correct in a number of confidence intervals. There are potential problems with independence, so you need to be a bit careful with the wording. For example: Fifteen  students undertake separate statistical analyses on the topics of their choice, and construct 95% confidence intervals. What is the probability that all the confidence intervals are correct, in that they do contain the estimated population parameter? This is well modelled by a binomial distribution with n =15 and p=0.05. P(X=0)=0.46. And another interesting idea – what is the probability that two or more are incorrect? 0.17 is the answer. So there is a 17% chance that more than one of the confidence intervals does not contain the population parameter of interest.

This is an area that needs careful teaching, and I suspect that some teachers have only a sketchy understanding of the idea of confidence intervals and margins of error. It is so important to know that statistical results are meant to be wrong some of the time.

Answers: T,T,F, debatable, F,F.

Data for the 35 cards:

Number on card













Number of cards