Dragon Trainer rich mathematical task

I love rich mathematical tasks. Here is one for all levels of schooling. What do you think?

Background to rich tasks

A rich task is an open-ended task that students can engage with at multiple levels. I use the following information from the nrich website when I am talking to teachers about rich tasks.

Some important aspects of rich mathematical tasks

Background to Dragonistics data cards

In this task we use our Dragonistics data cards, which are shown here. For a less colourful exercise you could use 24 pieces of card with numbers 1 to 8 on them.

A small sample of Dragonistics data cards

Each dragon has a strength rating of between 1 and 8, shown by the coloured dragon scales on the right-hand side of the card. The distribution of dragon strengths is not uniform, but is clustered around the middle, and depends to a certain extent on other aspects of the dragon, such as their species, gender and behaviour.

The students will already be familiar with the dragon cards, and each group of students has a set of about 24 dragonistics data cards. As there are a total of 288 dragons, each group will have a different set of dragons. Some may or may not have dragons of each strength rating.

The task

A dragon team trainer says that teams of two dragons chosen at random nearly always have a combined strength of between 7 and 11.
Is this true?
Provide evidence to support your conclusion.

Try it yourself

If you do not have any dragons of your own, make up about 20 pieces of card, with the numbers 1 to 8 on them, so you can explore the problem. Like Tracy Zager, we emphasise the necessity of exploring the maths ourselves before the children.

Possible approaches

What is great about this exercise is that you can explore it experimentally or theoretically. It has a low entry point, as encouraged on Youcubed. This is sometimes called “low floor, high ceiling”.For younger children, it is a good start to take pairs of dragons, add their strengths, and write down the answer. Then they need to work out a recording method, possibly a tally table.  You can have discussions about what it means for the dragons to be chosen randomly. You can also discuss what “nearly always” means.

Recently I used this task with a group of ten-year-olds. After they had made an attempt at solving it, I asked what they thought would be the most common team strength, and one said 9 or 10 because it is in the middle. I should have explored this idea further. What I did do, was start working out how many different combinations were possible. It is not possible to have a team of strength 1, and there is only one way to get a team of strength 2. How many ways to get strength 3? By the time we got to strength 6, they could see a pattern, that the number of combinations is one less than the total strength. So then I jumped to the other end of the distribution, asking “What is the strongest team we could possibly get?” As it happened, they did have two dragons of strength 8 in their set of dragons, so they correctly estimated the answer to be 16. So then I asked how many different ways they could get 16, and using their previous rule, they suggested 15 ways.  Then when I asked them to tell me what they were, they realised that there was only one way. From there we started working down the numbers. Unfortunately this was during a holiday programme, so I didn’t have time to pursue this further. However we will be using this exercise in our rural rich maths events.

Lessons to bring out at different levels

There are three main ways to approach this problem. The first is to experiment by randomly taking pairs of dragons, and recording their total strengths. A simple theoretical model involves thinking about all the possible outcomes and seeing what proportion of the outcomes lies between the chosen values. Then a more refined model would take into account the distributions of strengths for the given dragons.  The learners may well come up with some interesting other ways to go about this.

Extension questions

A teacher can encourage further thinking with questions such as:

Would this answer be the same for every group of dragons? Is it possible to find a set of dragons so that the only team strengths are between 5 and 11? What would happen if you had teams of three dragons. Does it make a difference if you select one team at a time, and shuffle, or divide into lots of teams and record, before shuffling? How many different team possibilities are possible? What if you only had green dragons – would this make a difference?

Show them the maths

It is important to point out the mathematical skills they are exercising as they tackle rich tasks. This task improves number skills, encourages persistence and risk-taking, develops communication skills as they are required to justify their conclusion. At higher levels it is helping to develop understanding of probability distributions, and you could also introduce or reinforce the idea of a random variable – in this case the team strength.

It would also be interesting to look at the spread for single dragons, two dragon teams and three dragon teams. With enough repetitions (and at this point a spreadsheet could be handy) the central limit theorem will start to be apparent. As you can see, there is great potential to expand this.

Transferring

We need to look at ways this is also applicable in daily life, and not just for dragon trainers. The same sort of problem would occur if you had people buying different numbers of items, or different weights of suitcases. You might like to think of the combined strengths as similar to total scores in sports events. At higher levels you might discuss the concept of independence.

So rich – so many possibilities! Thoughts?

Mathematics and statistics lessons about elections

Study elections in mathematics because it is important

Too often mathematics is seen as pure and apolitical.  Maths teachers may keep away from concepts that seem messy and without right and wrong answers. However, teachers of mathematics and statistics have much to offer to increase democratic power in the upcoming NZ general elections (and all future elections really). The bizarre outcomes for elections around the world recently (2016/2017 Brexit, Trump) are evidence that we need a compassionate, rational, informed populace, who is engaged in the political process, to choose who will lead our country. Knowledge is power, and when people do not understand the political process, they are less likely to vote. We need to make sure that students understand how voting, the electoral system, and political polls work. Some of our students in Year 13 will be voting this election, and students’ parents can be influenced to vote.

There are some lessons provided on the Electoral Commission site.   Sadly all the teaching resources are positioned in the social studies learning area – with none in statistics and mathematics. Similarly in the Senior Secondary guides, all the results from a search on elections were in the social studies subject area.

Elections are mathematically and statistically interesting and relevant

In New Zealand, our MMP system throws up some very interesting mathematical processes for higher level explorations. Political polls will be constantly in the news, and provide up-to-date material for discussions about polls, sample sizes, sampling methods, sampling error etc.

Feedback

It would be great to hear from anyone who uses these ideas. If you have developed them further, so much the better. Do share with us in the comments.

Suggestions for lessons

These suggestions for lessons are listed more or less in increasing levels of complexity. However I have been amazed at what Year 1 children can do. It seems to me that they are more willing to tackle difficult tasks than many older children. These lessons also embrace other curriculum areas such as technology, English and social studies.

Physical resources

Make a ballot box, make a voting paper. Talk about randomising the names on the paper. How big does the box need to be? How many ballot boxes are being made for the upcoming election? How much cardboard is needed?

Follow the polls

Make a time series graph of poll results. Each time there is a new result, plot it on the graph over the date, and note the sample size. At higher levels you might like to put confidence intervals on either side of the plotted value. A rule of thumb is 1/square root of the sample size. For example if the sample size is 700, the margin of error is 3.7%. So if the poll reported a party gaining 34% of the vote, the confidence interval would be from 33.3% to 37.7%.

You can get a good summary of political polls on Wikipedia.

From NZ maths  – On the Campaign Trail (CL 4)

Figure it Out, Number sense  Book 2 Level 4 – has an exercise about finding fractions, decimals, and percentages of amounts expressed as whole numbers, simple fractions, and decimals.

From NZ maths – Whose News (CL 4)

This is a guide to running an analysis on the level of representation of different geopgraphic areas in the news. The same lesson could be used for representation of different parties or different issues.

Graphical representations

The newspapers and online will be full of graphs and other graphical representations. Keep a collection and evaluate them for clarity and attractiveness.

How many people will be employed on election day?

This inquiry uses a mixture of internet search, mathematical modelling, estimation and calculation.

  • How many electorates are there?
  • How many polling booths per electorate?
  • How many people per booth?
  • How long are they employed for?

Fairness of booth provision

  • Is the location of polling booths fair?
  • What is the furthest distance a person might need to travel to a voting booth?
  • What do people in other countries do?

The mathematics of MMP

This link provides a thorough explanation of the system. A project could be for students to work out what it is saying and make a powerpoint presentation or short video explaining it more simply.

Overhang and scenario modelling

Overhang occurs when a party gets more electoral MPS elected than their proportion allows. Here is a fact sheet about overhang and findings of the electoral review. Students could create scenarios to evaluate the effect of overhang and find out what is the biggest overhang possible.

Small party provisions

How might the previous two election results have been different if there were not the 5% and coat-tailing rules?

Gerrymandering

Different ways of assigning areas to electorates get different results. The Wikipedia article on Gerrymandering has some great examples and diagrams on how it all happens, and the history behind the name.

Statistical analysis of age and other demographics

Statistics should be analysed in response to a problem, rather than just for the sake of it.
Suggested Scenario: A new political party is planning to appeal to young voters, under 30 years of age. They wish to find out which five electorates are the best to target. You may also wish to include turn-out statistics in your analysis.

Resource: Enrolment statistics by electorate – some graphs supplied, percentages for each electorate.

Statistical analysis of turn out

In the interests of better democracy, we wish to have a better voter turnout. Find out the five electorates with the best voter turnout and the worst, and come up with some ideas about why they are the best and the worst. Test out your theory/model by trying to predict the next five best and worst. Use what you find out to suggest how might we improve voter turnout.

Resource: Turn out statistics – by electorate or download the entire file

Happy teaching, and fingers crossed for September.

Educating the heart with maths and statistics

What has love got to do with maths?

This morning at the Twitter chat for teachers, (#bfc630nz) the discussion question was, How and what will you teach your students about life this year? As I lurked I was impressed at the ideas and ideals expressed by a mixed bunch of teachers from throughout New Zealand. I tweeted:  “I wonder how often maths teachers think about educating the heart. Yet maths affects how people feel so much.”

My teaching philosophy is summed up as “head, heart and hands”. I find the philosophy of constructivism appealing, that people create their own understanding and knowledge through experiences and reflection. I believe that learning is a social activity, and I am discovering that mathematics is a social endeavour. But underpinning it all I am convinced that people need to feel safe. That is where the heart comes in. “People do not care how much you know until they know how much you care.” Relationships are vital. I wrote previously about the nature of teaching statistics and mathematics.

Teachers are people

In the culture of NZ Maori, when someone begins to address a group of people, they give a mihi, which is an introductory speech following a given structure. The mihi has the role of placing the person with respect to their mountain, their river, their ancestors. It enables the listeners to know who the person is before they begin to speak about anything else. I am not fluent in te reo, so do not give a mihi in Maori (yet), but I do introduce myself so that listeners know who I am. Learners need to know why I am teaching, and how I feel about the subject and about them. It can feel self-indulgent, thinking surely it is about the subject, not about me. But for many learners the teacher is the subject. Just look at subject choices in high school students and that becomes apparent.

Recently I began studying art at an evening class. I am never a passive learner (and for that reason do feel sympathy for anyone teaching me). Anytime I have the privilege of being a learner, I find myself stepping back and evaluating my responses and thinking of what the teacher has done to evoke these responses. Last week, in the first lesson, the teacher gave no introduction other than her name, and I felt the loss. Art, like maths, is emotionally embedded, and I would have liked to have developed more of a relationship with my teacher, before exposing my vulnerability in my drawing attempts. She did a fine job of reassuring us that all of our attempts were beautiful, but I still would like to know who she is.

Don’t sweeten the broccoli

I suspect that some people believe that maths is a dry, sterile subject, where things are right or wrong. Many worksheets give that impression, with columns of similar problems in black and white, with similarly black and white answers. Some attempt to sweeten the broccoli by adding cartoon characters and using bright colours, but the task remains devoid of adventure and creativity. Now, as a child, I actually liked worksheets, but that is probably because they were easy for me, and I always got them right. I liked the column of little red ticks, and the 100% at the end. They did not challenge me intellectually, but I did not know any better. For many students such worksheets are offputting at best. Worksheets also give a limited view of the nature of mathematics.

I am currently discovering how narrow my perception of mathematics was. We are currently developing mathematical activities for young learners, and I have been reading books about mathematical discoveries. Mathematics is full of creativity and fun and adventure, opinion, multiple approaches, discussion and joy. The mathematics I loved was a poor two-dimensional faded version of the mathematics I am currently discovering.I fear most primary school teachers (and possibly many secondary school maths teachers) have little idea of the full potential of mathematics.

Some high school maths teachers struggle with the New Zealand school statistics curriculum. It is embedded in real-life data and investigations. It is not about calculating a mean or standard deviation, or some horrible algebraic manipulation of formulae. Statistics is about observing and wondering, about asking questions, collecting data, using graphs and summary statistics to make meaning out of the data and reflecting the results back to the original question before heading off on another question. Communication and critical thinking are vital. There are moral, ethical and political aspects to statistics.

Teaching mathematics and statistics is an act of social justice

I cannot express strongly enough that the teaching of mathematics and statistics is a political act. It is a question of social justice. In my PhD thesis work, I found that social deprivation correlated with opportunities to learn mathematics. My thoughts are that there are families where people struggle with literacy, but mostly parents from all walks of life can help their children with reading. However, there are many parents who have negative experiences around mathematics, who feel unable to engage their children in mathematical discussions, let alone help them with mathematics homework. And sadly they often entrench mathematical fatalism. “I was no good at maths, so it isn’t surprising that you are no good at maths.”

Our students need to know that we love them. When you have a class of 800 first year university students it is clearly not possible to build a personal relationship with each student in 24 contact hours. However the key to the ninety and nine is the one. If we show love and respect in our dealings with individuals in the class, if we treat each person as valued, if we take the time to listen and answer questions, the other students will see who we are. They will know that they can ask and be treated well, and they will know that we care. When we put time into working out good ways to explain things, when we experiment with different ways of teaching and assessing, when we smile and look happy to be there – all these things help students to know who we are, and that we care.

As teachers of mathematics and statistics we have daunting influence over the futures of our students. We need to make sure we are empowering out students, and having them feel safe is a good start.

STEM, STEM-Ed, STEAM and Statistics

STEM is a popular acronym in educational circles and is used to refer to careers and educational tasks. Though most know that the four letters stand for Science, Technology, Engineering and Mathematics, it can be difficult to pin down what exactly it means. In this post I suggest that there are two related uses of STEM as a description.

STEM

The term, STEM, originated in the USA in the late 1990s to describe specific careers and education for these careers. There seems to be no universally agreed-upon definition of STEM. From a careers perspective, the focus is on making sure that there are enough skilled workers in the STEM areas for future development. A common (engineering?) analogy is that of a pipeline. Industrialised nations need people with STEM skills, so need to ensure there are enough people entering and staying in the pipeline in order to fill future demand. There are also identified equity issues, as STEM jobs tend to be higher-paying, and also tend to be dominated by white males. A consequence of the higher demand and pay for people with STEM skills and qualifications is that there is often a shortage of teachers in STEM subjects.

This graphic illustrates the analogy of a STEM pipeline. Are people the drips?

This graphic illustrates the analogy of a STEM pipeline. Are people the drips?

 

STEM Education

There are multiple ways of viewing STEM Education. One category is specific STEM Projects which I refer to as STEM-Ed, and another is education in STEM subjects, as they currently exist in the school curriculum.

STEM-Ed

It is believed that one way to encourage children and young people to continue in STEM subjects, is to embed STEM into the curriculum. There has been a move towards specific STEM-based lessons or projects, particularly at middle-school or older primary level. Pinterest is full of attractive STEM-Ed lessons based around engineering and the design process. These include tower and bridge building, making boats to carry certain weights, creating a mechanism that will protect an egg from a fall or launching projectiles a maximum or specified distance. STEM-Ed lessons use a wide range of materials, including Lego bricks, spaghetti, marshmallows, masking tape, newspaper, recycled materials – just about anything you can think of. The makerspace movement ties in with STEM-Ed.

A good STEM-Ed project is described by Anne Jolly in her post Perfect STEM lessons. Anne Jolly suggests that a “perfect” STEM lesson uses an engineering approach as a framework, applies maths and science content through authentic experiences, deals with real world issues, involves hands-on and open-ended exploration with multiple right answers for students working in teams with the teacher in a facilitator role. A STEM project should also engage students in communicating, remove the fear of failure, appeal equally to boys and girls and promote authentic assessment.

It seems that when primary/elementary school teachers talk about STEM, it is usually STEM-Ed they are referring to. Certainly material under the STEM label on Pinterest, a popular source of inspiration for teachers, tends to be STEM-Ed.

A screenshot of some STEM tasks found on Pinterest

A screenshot of some STEM tasks found on Pinterest

Education in STEM subjects

In order to encourage and enable students to continue on to STEM careers, they must study the individual subjects that make up STEM. At school level, maths, physics and chemistry are often the areas where students make decisions that limit their later opportunities in STEM areas. (Where they leak out of the pipeline?) This is where teachers of STEM subjects have a part to play. Tying their subjects to authentic, real world contexts and teaching using STEM-Ed projects can help engagement.

However, there is also a need to learn the mathematics that does not appear in a “good STEM lesson”. Current mathematics education thinking aims to enable children to become mathematicians, not just engineers. To quote Tracey Zager’s excellent book, “Becoming the math teacher you wish you’d had“, mathematicians take risks, make mistakes, are precise, rise to a challenge, ask questions, connect ideas, use intuition, reason, prove, and work together and alone. Mathematics curriculum overlaps well with STEM-Ed in the areas of measurement, geometry and statistics. Number skills are practised in context. However, to provide enough exposure to other areas of mathematics, specific STEM-Ed lessons would need to be carefully designed. I suspect that there are areas of the curriculum that are more effectively learned through other methods than STEM-Ed.

STEAM

There is a push to add Arts to STEM, making it STEAM. The relevance of this addition depends on viewpoint. It does not seem relevant to include Arts when talking about high-shortage career paths. But at the same time, STEM jobs also require other skills, not the least being communication skills. There is a strong link between fine art and technology, through design. The inclusion of A in STEM also depends on the definition of Art. The term “Arts” can include painting, music, dance, literature, film, design and the even the humanities. Including these into STEM (as a career or subject description) seems a trifle incongruous and begs the question whether there is anything that is not included in STEAM. Physical education and foreign languages?

However, when we look at STEM-Ed, there is a rationale for the inclusion of art. Good design does have an artistic component, as is all too clear when we look at some communist-era architecture and much amateur web-design. And written and oral communication are well-developed in many STEM-Ed projects.

Statistics

Statistics clearly has a place in both STEM and STEM-Ed. There is a demand for statisticians, and people who can use statistics in what they do. The study of the discipline of statistics gives important insights into the nature of variability in our world. STEM-Ed projects could involve collecting and analysing data in a non-trivial way, though I have not seen evidence of this. The barrier to this is the statistical understanding of the teachers creating the STEM-Ed tasks, and points to an area where statistics educators need to be involved. Another barrier can be the time taken to collect an adequate sample, clean the data and analyse it. This is why specific tasks need to be designed for this.

Concerns about STEM and STEM-Ed

We do need to think about the focus on STEM and wonder about the philosophical underpinnings. Are we educating our students to provide workers for the industrial machine? Is this the right thing to be doing? I found a very interesting book: Philosophy of STEM Education: A Critical Investigation by Nataly Z. Chesky and Mark R. Wolfmeyer . They ask these important questions.

STEM-Ed also needs to be approached carefully. Dayle Anderson, a lecturer in science education emphasised at a Primary Maths Symposium that teachers need to keep their eye on the learning. When a project is engaging it can be seductive to think that the learning is taken care of. There are so many demands on time in a school, that STEM-Ed lessons need to be well-designed for specific learning.

STEM, STEM-Ed and 21st Century Skills

I am quite taken with the 4 Cs of 21st Century Skills, which have been defined as Critical thinking and problem solving, Communicating, Collaborating and Creativity and innovation. These correspond well to the five Key Competencies in the New Zealand curriculum – thinking, using language, symbols, and texts, managing self, relating to others and participating and contributing. These skills are needed by people who work in STEM jobs. They need to be able to communicate and work with others.

These 21st Century skills can be developed in STEM-Ed lessons, as students are required to work together, solve problems, think, innovate and communicate their results.

Closing thoughts

Overall I am excited about STEM and STEM-Ed. A knowledge of how the world around us works is empowering to all, whether or not they join the STEM pipeline. Making mathematics, statistics and other related subjects more relevant and desirable is always going to be a good thing. Statistics educators need to be involved make sure that statistics is a vital part of STEM-Ed.

Any suggestions on how this is best achieved? And if you are interested in STEM-Ed, please Like and Follow our Facebook page to keep up with the discussion and find out about our contribution.

The Class-size debate – it matters to teachers

Class size matters to teachers

Class size is a perennial question in education. What is the ideal size for a school class? Teachers would like smaller classes, to improve learning. There is evidence of a small positive effect size due to reducing class size from meta-analysis published in John Hattie’s Visible Learning. But it makes sense, teachers argue – fewer children in the class means more opportunities for one-to-one interactions with the teacher. It makes for easier crowd control, less noise and less stress for teachers and pupils. And in these days of National Standards, it makes the assessment load more realistic.

Educational Research is difficult

I’d just like to point out that educational research is difficult. One of my favourite readings on educational research is an opinion piece by David Berliner, Educational Research: The hardest science of all,  where he explains the challenge of educational research. It was written in response to a call by the US Government for evidence-based practices in education. Berliner reminds us of how many different factors contribute to learning. And measuring learning is itself an inexact science. At one point he asks: “It may be stretching a little, but imagine that Newton’s third law worked well in both the northern and southern hemispheres—except of course in Italy or New Zealand—and that the explanatory basis for that law was different in the two hemispheres. Such complexity would drive a physicist crazy, but it is a part of the day-to-day world of the educational researcher.”

Ask the teachers

So with this in mind, I decided to ask the experts. I asked NZ primary school teachers who are just gearing up for the 2017 school year. These teachers were invited via a Facebook group to participate in a very short poll using a Google Form. There were just eight questions – the year level they teach, the minimum, maximum and ideal size for a class at that level, how many children they are expecting in their class this year and how long they have been teaching. The actual wording for the question about ideal class size was: “In your opinion what is the ideal class size that will lead to good learning outcomes for the year level given above?” There were also two open-ended questions about how they had chosen their numbers, and what factors they think contribute to the decision on class-size.

Every time I do something like this, I underestimate how long the analysis will take. There were only eight questions, thought I. How hard can that be…. sigh. But in the interests of reporting back to the teachers as quickly as possible, I will summarise the numeric data, and deal with all the words later.

Early results

There were about 200 useable responses. There was a wide range of experience within the teachers. A third of the teachers had been teaching for five years or shorter, and 20% had been teaching for more than twenty years. There was no correlation between the perceived ideal class size and the experience of the teacher.

The graph below displays the results, comparing the ideal class-size for the different year levels. Each dot represents the response of one teacher. It is clear that the teachers believe the younger classes require smaller classes. The median value for the ideal class size for a New Entrant, Year 1 and/or Year 2 class is 16. The median value for the ideal class size for Year 3/4 is 20, for Year 5/6 is 22 and for year 7/8 is 24. The ideal class size increases as the year level goes up. It is interesting that even numbers are more popular than odd numbers. In the comments, teachers point out that 24 is a very good number for splitting children into equal-sized groups.

These dotplot/boxplots from iNZight show each of the responses, and the summary values.

These dotplot/boxplots from iNZight show each of the responses, and the summary values.

It is interesting to compare the maximum class size the teachers felt would lead to good learning outcomes. I also asked what class size they will be teaching this year.  The table below gives the median response for the ideal class size, maximum acceptable, and current class size. It is notable that the current class sizes are all at least two students more than the maximum acceptable values, and between six and eight students more than the ideal value.

Median response
Year Level Number of respondents Ideal class size Maximum acceptable Current
New Entrant Year 1/2 56 16 20 22
Year 3/4 40 20 24.5 27.5
Year 5/6 53 22 25 30
Year 7/8 46 24 27 30

Financial considerations

It appears that most teachers will be teaching classes that are considerably larger than desired. This looks like a problem. But it is also important to get the financial context. I asked myself how much money would it take to reduce all primary school classes by four pupils (moving below the maximum, but more than the ideal)? Using figures from the Ministry of Education website, and assuming the current figures from the survey are indicative of class sizes throughout New Zealand, we would need about 3500 more classes. That is 3500 more rooms that would need to be provided, and 3500 more teachers to employ. It is an 18% increase in the number of classes. The increase in salaries alone would be over one hundred million dollars per year. This is not a trivial amount of money. It would certainly help with unemployment, but taxes would need to increase, or money would need to come from elsewhere.

Is this the best way to use the money? Should all classes be reduced or just some? How would we decide? How would it be implemented? If you decrease class sizes suddenly you create a shortage of teachers, and have to fill positions with untrained teachers, which has been shown to decrease the quality of education. Is the improvement worth the money?

My sympathies really are with classroom teachers. (If I were in charge, National Standards would be gone by lunchtime.) I know what a difference a few students in a class makes to all sorts of things. At the same time, this is not a simple problem, and the solution is far from simple. Discussion is good, and informed discussion is even better. Please feel free to comment below. (I will summarise the open-ended responses from the survey in a later post.)

Has the Numeracy Project failed?

The Numeracy Development Project has influenced the teaching of mathematics in New Zealand. It has changed the language people use to talk about mathematical understanding, introducing the terms “multiplicative thinking”, “part-whole” and “proportional reasoning” to the teacher toolkit. It has empowered some teachers to think differently about the teaching of mathematics. It has brought “number” front and centre, often crowding out algebra, geometry, measurement and statistics, which are now commonly called the strands. It has baffled a large number of parents. Has the Numeracy Development Project been a success? If not, how can we fix it?

I have been pondering about the efficacy and side-effects of the Numeracy Project in New Zealand. I have heard criticisms from Primary and Secondary teachers, and defense and explanation from advisors. I have listened to a very illuminating podcast from one of the originators of the Numeracy Project, Ian Stevens, I have had discussions with another educational developer who was there at the beginning. I even downloaded some of the “pink booklets” and began reading them, in order understand the Numeracy Project.

Then I read this article from the US organisation, National Council of Teachers of Mathematics, Strategies are not Algorithms,  and it all started to fall into place.
The authors explain that researchers analysed the way that children learn about mathematics, and the stages they generally go through. It was found that “Students who used invented strategies before they learned standard algorithms demonstrated better knowledge of base-ten number concepts and were more successful in extending their knowledge to new situations than were students who initially learned standard algorithms.” They claim that in the US “(t)he idea of “invented strategies” has been distorted to such a degree that strategies are being treated like algorithms in many textbooks and classrooms across the country.” I suspect this statement also applies in New Zealand.

Strategies taught as algorithms

Whitacre and Wessenberg refer to a paper by Carpenter et al, A Longitudinal Study of Invention and Understanding in Children’s Multidigit Addition and Subtraction. I was able to get access to read it, and found the following:
“Although we have no data regarding explicit instruction on specific invented strategies, we hypothesize that direct instruction could change the quality of children’s understanding and use of invented strategies. If these strategies were the object of direct instruction, there would be a danger that children would learn them as rote procedures in much the way that they learn standard algorithms today.” (Emphasis added)

Were they right? Are the strategies being taught as rote procedures in some New Zealand classrooms? Do we need to change the way we talk about them?

How I see the Numeracy Development Project (NDP)

The NDP started as a way to improve teacher pedagogical content knowledge to improve outcomes for students. It was intended to cover all aspects of the New Zealand Mathematics and Statistics curriculum, not just number. Ian Stevens explained: “Numeracy was never just Number. We decided that in New Zealand numeracy meant mathematics and mathematics meant numeracy.”

The Numeracy Development Project provided a model to understand progression of understanding in learning mathematics. George Box once said “All models are wrong and some models are useful.” A model of progression of understanding is useful for identifying where we are, and how to progress to where we would like to be, rather like a map. But a map is not the landscape, and children differ, circumstances change, and models in education change faster than most. I recently attended a talk by Shelley Dole, who (I think) suggested that by emphasising additive thinking in the early school years, we may undo the multiplicative and proportional thinking the students had already. If all they see is adding and subtracting, any implication towards multiplicative and proportional thinking is stifled. It is an interesting premise.
The Numeracy Project (as it is now commonly called) suggested teaching methods, strongly based around group-work and minimising the use of worksheets. Popular invented strategies for arithmetic operations were described, and the teaching of standard algorithms such as vertical alignment of numbers when adding and subtracting was de-emphasised.
An unintended outcome is that the Numeracy Project has replaced the NZ curriculum in some schools, with “Number” taking centre stage for many years. Teachers are teaching invented strategies as algorithms rather than letting students work them out for themselves. At times students are required to know all the strategies before moving on. Textbooks, worksheets and even videos based around the strategies abound, which seems anathema to the original idea.

Where now?

So where do we go from here?

To me empowerment of teachers is pivotal. Teachers need to understand and embrace the beauty of number theory, the practicality of measurement, the art and challenge of geometry, the detective possibilities in data and the power of algebra to model our world. When mathematics is seen as a way to view the world, and embedded in all our teaching, in the way literacy is, maybe then, we will see the changes we seek.

10 hints to make the most of teaching and academic conferences

Hints for conference benefit maximisation

I am writing this post in a spartan bedroom in Glenn Hall at La Trobe University in Bundoora (Melbourne, Australia.) Some outrageously loud crows are doing what crows do best outside my window, and I am pondering on how to get the most out of conferences. In my previous life as a University academic, I attended a variety of conferences, and discovered some basic hints for enjoying them and feeling that my time was productively used. In the interests of helping conference newcomers I share them here. They are in no particular order.

1. Lower your expectations

Sad, but true, many conference presentations are obvious, obscure or dull. And some are annoying. If you happen to hit an interesting and entertaining presentation – make the most of it. I have talked to several newbies this afternoon whose experience of the MAV conference could be described as underwhelming. This is not the fault of the conference, but rather a characteristic of conferences as a whole. My rule of thumb is that if you get one inspiring or useful presentation per day you are winning. (Added later) You can generally find something positive in any presentation, and it is good to tweet that. (Thanks David Butler for reminding me!)

2. Pace yourself

When I first went to conferences I would make sure that I attended every session, feeling I needed to fulfil my obligations to the University that was kindly funding (or in those days, part-funding) my trip and attendance. Fortunately I was saved from exhaustion by my mentor, who pointed out that you had diminishing returns, if not negative returns on continued attendance beyond a certain point. Consequently I have learned to take a break and not attend every single presentation I can. Some down-time is also good for contemplating what you have heard. Conferences are also a chance to step back from the daily grind, and think about your own teaching practice or research.

3. Go to something out of your usual area of interest.

When I used to teach operations research, many of the research talks went whizzing over my head. But every now and then I would find a gem, which for me would be a wonderful story I could tell in lectures of how operations research had saved money, lives or the world from annihilation. You never know what you might find.

4. Remember “Names” are just people too.

It may be my colonial cringe, but I tend to be a little in awe of the “big names” in any field. These are the people who have been paid to attend the conference, who give keynote addresses, and you have actually heard of before. Next year at the NZAMT conference in October, Dan Meyer is going to be a keynote speaker. I have to say I am a little in awe of him, but at the same time know that that is silly. Dick de Veaux is one of my favourite keynote speakers and you could not ask for a nicer or more generous person. The point is that speakers are people too, and are playing a certain role at a conference, which means that they should give the punters some of their time. – So this is my advice to paid keynote speakers – be nice to people. It can’t hurt, and it can make a real difference in their lives. Because of my YouTube videos I have a small level of celebrity among some teachers and learners of statistics in New Zealand. (I said it was small) I LOVE it when people talk to me, and hope no one would feel reluctant. If it is in your power to do good, do it

5.Talk to people.

This can be daunting and tiring, but is essential to make the most of a conference opportunity. The point of conferences is to bring people together, so if you do not talk to anyone other than the people you came with, you could have stayed home and watched presentations on YouTube. I am learning that some conversation topics are easy starters : “Where are you from?”, “What do you teach/research?”, “Have you been to any good sessions?” “What did you think of the Keynote?” are all reasonably safe. To my surprise, criticising the US President elect was not universally well received, so I have learned to avoid that one. Being positive is a good idea, and one I need to remember at all times. When I do not agree with what a speaker is saying I have a tendency to growl in a Marge Simpsonesque way. This can be disturbing to the people around me and I am attempting to stop it.

At the 2016 MAV conference I had yellow hair, and immediately found kinship with a delightful and insightful young teacher with magenta hair. Now if we could just have found an attendee with cyan hair we could have impersonated a printer cartridge! I went to Sharon’s presentation and she to mine, and I believe we were both the better for it.

We have Yellow and Magenta - but where is Cyan?

We have Yellow and Magenta – but where is Cyan?

6. Be brave and give a presentation

The biennial NZ Association of Maths teachers conference is being held in Christchurch on 3rd to 6th October 2017. I strongly believe we need more input from primary teachers, and more collaboration across primary, secondary and tertiary. It would be SOO wonderful to have many primary teachers giving workshops or presentations of work they are doing in their maths classrooms.

The abstracts are due by the end of May and if any primary teachers would like some help putting one together, I would be really happy to help.

7. Visit the trade displays

The companies that have trade displays pay a considerable amount for the right to do so. I believe that teachers need producers of educational resources, and when you visit producers and give them the opportunity to talk about their product, it makes it worthwhile for them to sponsor, thus keeping the price down. And you never know – you might find something really useful!

8. Split up to maximise benefit.

If two or more of you come from the same school or organisation, it is a good idea to plan your programme together. When there are 40 – or even 10 presentations to choose from in any one slot, it is more sensible to attend different ones.

9. Plan ahead

It is really helpful to know when conferences are approaching, so I have added links below to the maths teaching conferences I know about, in the hope that many of you may think about attending. Do let me know any you know about that I haven’t listed.

10. Wear sensible shoes

This particularly applies to the MAV conference at La Trobe University. It is held on a massive campus, which is particularly confusing to get around, so one tends to cover far more ground than intended. I was pleased I sacrificed style for comfort in this particular instance, after a bad attack of blisters last year.

11.Add your own hints

Any other conference attenders here – what other suggestions could you make?

Mathematics and statistics teaching conferences in New Zealand and Australia

Primary Mathematics Association 25 March 2017, Auckland

AAMT 11 – 13 July 2017, Canberra, Australia

2017 MANSW Annual Conference 15-17 September 2017.

NZAMT 3 – 7 October 2017 Christchurch New Zealand

MAV Early Dec 2017 Melbourne, Australia

 

 

Mathematics activities using Lego bricks

I love Lego. And I love making up mathematics and statistics activities for people of all levels of attainment. So it makes sense that I would make up maths discussion activities using Lego.

Whenever I have posted my ideas on Twitter (hashtag @Rogonic) and Facebook (Statistics Learning Centre) they have proved popular. So I thought it would be good to put them in a less transient location – this blog.

Here is one to start with:

Which of the models, A to H is most like the one in the middle?

Which of the models, A to H is most like the one in the middle?

 

You can ask any question you like. I suggest, “Which of the models, A to H is most like the model in the middle?”

Then listen to what your learners have to say. Feel free to vote here:

I would love to hear what comes of this discussion. Please put your ideas in the comments below. In a follow-up post, I will talk about some of the concepts that might have arisen in discussions. A follow-up activity for your students (or you) is to come up with a new model that is most like the one in the middle, but not exactly the same.

Math/Maths Lego/Legos

Explanation of the placement of the letter ‘s’ with respect to Maths with Lego. The Danish company that makes Lego does not approve of the use of Legos as a word. The plural of one Lego brick is two Lego bricks. In New Zealand we talk about Lego as a collective noun, as in “I am going to play with my Lego” and “Pick up your Lego before I stand on it.” We also follow the UK tradition of talking about the subject of Maths, rather than Math. I am aware that my friends in the US would talk about Math with Legos, but I am not in the US so I reserve the right to talk about Maths with Lego. I am refraining from making any statement about the state of politics in the US at present… With difficulty.

Disclaimer

This website uses Lego (R) bricks to teach mathematical and statistical concepts. There is no official affiliation with the Lego(R) company. Lego is a registered trademark of the Lego company.

Talking in class: improving discussion in maths and stats classes

Maths is right or wrong – end of discussion  – or is it?

In 1984 I was a tutor in Operations Research to second year university students. My own experience of being in tutorials at University had been less than inspiring, with tutors who seemed reserved and keen to give us the answers without too much talking. I wanted to do a good job. My induction included a training session for teaching assistants from throughout the university. Margaret was a very experienced educational developer and was very keen for us to get the students discussing. I tried to explain to her that there really wasn’t a lot to discuss in my subject. You either knew how to solve a set of linear equations using Gauss-Jordan elimination or you didn’t. The answer was either correct or incorrect.

I suspect many people have this view of mathematics and its close relations, statistics and operations research.  Our classes have traditionally followed a set pattern. The teacher shows the class how to do something. The class copies down notes and some examples into their books, and then they individually work through exercises in the textbook – generally in silence. The teacher walks around the room and helps students as needed.

Prizes can help motivate students to give answers in unfamiliar settings

Prizes can help motivate students to give answers in unfamiliar settings

So when we talk about discussion in maths classes, this is not something that mathematics and statistics teachers are all familiar with. I recently gave a workshop for about 100 Scholarship students in Statistics in the Waikato. What a wonderful time we had together! The students were from all different schools and needed to be warmed up a little with prizes, but we had some good discussion in groups and as a whole. One of the teachers  commented later on the level of discussion in the session. Though she was an experienced maths teacher she found it difficult to lead discussion in the class. I am sure there are many like her.

It is important to talk in maths and stats classes

It is difficult for many students to learn in solitary silence. As we talk about a topic we develop our understanding, practice the language of the discipline and experience what it means to be a mathematician or statistician. Explaining ideas to others helps us to make sense of them ourselves. As we listen to other people’s thinking we can see how it relates to what we think, and can clear up misconceptions. Some people just like to talk, (who me?) and find learning more fun in a cooperative or collaborative environment. This recognition of the need for language and interaction underpins the development of “rich tasks” that are being used in mathematics classrooms throughout the world.

I have previously stated that “Maths learning should be communal and loud and exciting, not solitary, quiet and routine.”

Classroom atmosphere

One thing that was difficult at the Scholarship day was that the students did not know each other, and came from various schools. In a regular classroom the teacher has the opportunity of and responsibility for setting the tone of the class. Students need to feel safe. They need to feel that giving a wrong answer is not going to lead to ridicule. Several sessions at the start of the year may be needed to encourage discussion. Ideally this will become less necessary over time as students become used to interactive, inquiry-based learning in mathematics and statistics through their whole school careers.

Number talks” are a tool to help students improve their understanding of number, and recognise that there are many ways to see things. For example, the class might be shown a picture of dots and asked to explain how many dots they see, and how they worked it out. Several different ways of thinking will be discussed.

Children are encouraged to think up multiple ways of thinking about numbers  and to develop discussion by following prompts, sometimes called “talk moves”. Talk moves include revoicing, where the teacher restates what she thinks the student has said, asking students to restate another students reasoning, asking students to apply their own reasoning to someone else’s reasoning (Do you agree or disagree and why?), prompting for further participation (Would someone like to add on?), and using wait time (teachers should allow students to think for at least 10 seconds before calling on someone to answer. These are explained more fully in The Tools of Classroom talk.

Google Image is awash with classroom posters outlining “Talk moves”. I have been unable to trace back the source of the term or the list, and would be very pleased if someone can tell me the source,  to be able to attribute this structure.

Good questions

The essence of good discussion is good questions. Question ping pong is not classroom discussion. We have all experienced a teacher working through examples on the board, while asking students the answers to numerical questions. This is a control technique for keeping students attentive, but it can fall to a small group of students who are quick to answer. I remember doing just this in my tutorial on solving matrices, when I didn’t know any better.

Teachers should avoid asking questions that they already know the answers to.

It is not a hard-and-fast rule, but definitely a thing to think about. I like to use True/False quizzes to help uncover misconceptions, and develop use of statistical language. I just about always know the answer to the question, but what I don’t know is how many students know the answer. So  I ask the question not to know the answer, but to know if the students do, and to provoke discussion. Perhaps a more interesting question would be, how many students do you think will say “True” to this statement. It would then be interesting to find out their reasoning, so long as it does not get personal!

Multiple answers and open-ended questions

Where possible we need to ask questions that can have a number of acceptable answers. A discussion about what to do with outliers will seldom have a definitive answer, unless the answer is that it depends! Asking students to make a pictorial representation of an algebra problem can lead to interesting discussions.

The MathTwitterBlogosphere has many attractive ideas to use in teaching maths.

I rather like “Which one doesn’t belong”, which has echoes of “One of these things is not like the other, one of these things doesn’t belong, can you guess…” from Sesame Street. However, in Sesame Street the answer was usually unambiguous, whereas  with WODB there are lots of ways to have alternative answers. There is a website dedicated to sets of four objects, and the discussion is about which one does not belong. In each case all four can “not belong” for some reason, which I find a bit contrived, but it can lead to discussion about which is the strongest case of not belonging.

Whole class and group discussion

Some discussions work well for a whole class, while others are better in small groups or pairs. Matching or ordering paper slips with expressions can lead to great discussion. For example we could have a set of graphs of the same data, and order them according to how effective they are at communicating the aspects of the data. Or there could be statements of possible events and students can place them in order of likelihood. The discussion involved in ordering them helps students to clarify the nature of probability. Desmos has a facility for teachers to set up card matching or grouping exercises, which reduces the work and waste of paper.

Our own Dragonistics data cards are great for discussion. Students can be given a number of dragons (more than two) and decide which one is the best, or which one doesn’t belong, or how to divide the dragons fairly into two or more groups.

It can seem to be wasting time to have discussion. However the evidence from research is that good discussion is an effective way for students to learn mathematics and statistics. I challenge all maths and stats teachers to increase and improve the discussion in their class.

Play and learning mathematics and statistics

The role of play in learning

I have been reading further about teaching mathematics and came across this interesting assertion:

Play, understood as something frivolous, opposed to work, off-task behaviour, is not welcomed into most mathematics classrooms. But play is exactly what is needed. It is only play that can entice us to the type of repetition that is needed to learn how to inhabit the mathematical landscape and how to create new mathematics.
Friesen(2000) – unpublished thesis, cited in Stordy, Children Count, (2015)

Play and practice

It is an appealing idea that as children play, they have opportunities to engage in repetition that is needed in mastering some mathematical skills. The other morning I decided to do some exploration of prime numbers and factorising even before I got out of bed. (Don’t judge me!). It was fun, and I discovered some interesting properties, and came up with a way of labelling numbers as having two, three and more dimensions. 12 is a three dimensional number, as is 20, whereas 35 and 77 are good examples of two dimensional numbers. As I was thus playing on my own, I was aware that it was practising my tables and honing my ability to think multiplicatively. In this instance the statement from Friesen made sense. I admit I’m not sure what it means to “create new mathematics”. Perhaps that is what I was doing with my 2 and 3 dimensional numbers.

You may be wondering what this has to do with teaching statistics to adults. Bear with…

Traditional vs recent teaching methods for mathematics

Today on Twitter, someone asked what to do when a student says that they like being shown what to do, and then practising on textbook examples. This is the traditional method for teaching mathematics, and is currently not seen as ideal among many maths teachers (particularly those who inhabit the MathTwitterBlogosphere or MTBoS, as it is called). There is strong support for a more investigative, socially constructed approach to learning and teaching mathematics.  I realise that as a learner, I was happy enough learning maths by being shown what to do and then practising. I suspect a large proportion of maths teachers also liked doing that. Khan Academy videos are wildly popular with many learners and far too many teachers because they perpetuate this procedural view of mathematics. So is the procedural approach wrong? I think what it comes down to is what we are trying to teach. Were I to teach mathematics again I would not use “show then practise” as my modus operandi. I would like to teach children to become mathematicians rather than mathematical technicians. For this reason, the philosophies and methods of Youcubed, Dan Meyer and other MTBoS bloggers have appeal.

Play and statistics

Now I want to turn my thoughts to statistics. Is there a need for more play in statistics? Can statistics be playful in the way that mathematics can be playful? Operations Research is just one game after another! Simulation, critical path, network analysis, travelling salesperson, knapsack problem? They are all big games. Probability is immensely playful, but what about statistical analysis? Can and should statistics be playful?

My first response is that there is no play in statistics. Statistics is serious and important, and deals with reality, not joyous abstract ideas like prime numbers and the Fibonacci series – and two and three dimensional numbers.

The excitement of a fresh set of data

But there is that frisson of excitement as you finally finish cleaning your database and a freshly minted set of variables and observations beckons to you, with SPSS, SAS or even Excel at your fingertips. A new set of data is a new journey of discovery. Of course a serious researcher has already worked out a methodical route through her hypotheses… maybe. Or do we mostly all fossick about looking for patterns and insights, growing more and more familiar with the feel of the data, as if we were squeezing it through our fingers? So yes – my experience of data exploration is playful. It is an adventure, with wrong turns, forgetting the path, starting again, finding something only to lose it again and finally saying “enough” and taking a break, not because the data has been exhausted, but because I am.

Writing the report is like cleaning up

Writing up statistical analysis is less exciting. It feels like picking up the gardening tools and putting them away after weeding the garden. Or cleaning the paintbrushes after creating a masterpiece. That was not one of my strengths – finishing and tidying up afterwards. The problem was that I felt I had finished when the original task had been completed – when the weeds had been pulled or the painting completed. In my view, cleaning and putting away the tools was an afterthought that dragged on after the completion of the task, and too often got ignored. Happily I have managed to change my behaviour by rethinking the nature of the weeding task. The weeding task is complete when the weeds are pulled and in the compost and the implements are resting clean and safe where they belong. Similarly a statistical analysis is not what comes before the report-writing, but is rather the whole process, ending when the report is complete, and the data is carefully stored away for another day. I wonder if that is the message we give our students – a thought for another post.

Can statistics be playful?

For I have not yet answered the question. Can statistics be playful in the way that mathematics can be playful? We want to embed play in order to make our task of repetition be more enjoyable, and learning statistics requires repetition, in order to develop skills and learn to differentiate the universal from the individual. One problem is that statistics can seem so serious. When we use databases about global warming, species extinction, cancer screening, crime detection, income discrepancies and similarly adult topics, it can seem almost blasphemous to be too playful about it.

I suspect that one reason our statistics videos on YouTube are so popular is because they are playful.

helen-has-attitude

Helen has an attitude problem

Helen has a real attitude problem and hurls snarky comments at her brother, Luke. The apples fall in an odd way, and Dr Nic pops up in strange places. This playfulness keeps the audience engaged in a way that serious, grown up themes may not. This is why we invented Ear Pox in our video about Risk and screening, because being playful about cancer is inappropriate.

Ear Pox is imaginary disease for which we are studying the screening risk.

Ear Pox is imaginary disease for which we are studying the screening risk.

Dragonistics data cards provide light-hearted data which yields worth-while results.

A set of 240 Dragonistics data cards provides light-hearted data which yields satisfying results.

When I began this post I did not intend to bring it around to the videos and the Dragonistics data cards, but I have ended up there anyway. Maybe that is the appeal of the Dragonistics data cards –  that they avoid the gravitas of true and real grown-up data, and maintain a playfulness that is more engaging than reality. There is a truthiness about them – the two species – green and red dragons are different enough to present as different animal species, and the rules of danger and breath-type make sense. But students may happily play with the dragon cards without fear of ignorance or even irreverence of a real-life context.

What started me thinking about play with regards to learning maths and statistics is our Cat Maths cards. There are just so many ways to play with them that I can see Cat Maths cards playing an integral part in a junior primary classroom. This is why we created them and want them to make their way into classrooms. Sadly, our Kickstarter campaign was unsuccessful, but we hope to work with an established game manufacturer to bring them to the market by the end of 2017.

We'd love your help.

We’d love your help.

Your thoughts about play and statistics

And maybe we need to be thinking a little more about the role of play in learning statistics – even for adults! What do you think? Can and should statistics be playful? And for what age group? Do you find statistical analysis fun?