# Calculus is the wrong summit of the pyramid.

“The mathematics curriculum that we have is based on a foundation of arithmetic and algebra. And everything we learn after that is building up towards one subject. And at top of that pyramid, it’s calculus. And I’m here to say that I think that that is the wrong summit of the pyramid … that the correct summit — that all of our students, every high school graduate should know — should be statistics: probability and statistics.”

Ted talk by Arthur Benjamin in February 2009. Watch it – it’s only 3 minutes long.

He’s right, you know.

And New Zealand would be the place to start. In New Zealand, the subject of statistics is the second most popular subject in our final year of schooling, with a cohort of 12,606. By comparison, the cohort for English is 16,445, and calculus has a final year cohort of 8392, similar in size to Biology (9038), Chemistry (8183) and Physics (7533).

Some might argue that statistics is already the summit of our curriculum pyramid, but I would see it more as an overly large branch that threatens to unbalance the mathematics tree. I suspect many maths teachers would see it more as a parasite that threatens to suck the life out of their beloved calculus tree. The pyramid needs some reconstruction if we are really to have a statistics-centric curriculum. (Or the tree needs pruning and reshaping – I think I have too many metaphors!)

# Statistics-centric curriculum

So, to use a popular phrase, what would a statistics-centric curriculum look like? And what would be the advantages and disadvantages of such a curriculum? I will deal with implementation issues later.

To start with, the base of the pyramid would look little different from the calculus-pinnacled pyramid. In the early years of schooling the emphasis would be on number skills (arithmetic), measurement and other practical and concrete aspects. There would also be a small but increased emphasis on data collection and uncertainty. This is in fact present in the NZ curriculum. Algebra would be introduced, but as a part of the curriculum, rather than the central idea. There would be much more data collection, and probability-based experimentation. Uncertainty would be embraced, rather than ignored.

In the early years of high school, probability and statistics would take a more central place in the curriculum, so that students develop important skills ready for their pinnacle course in the final two years. They would know about the statistical enquiry cycle, how to plan and collect data and write questionnaires. They would perform their own experiments, preferably in tandem with other curriculum areas such as biology, food-tech or economics. They would understand randomness and modelling. They would be able to make critical comments about reports in the media . They would use computers to create graphs and perform analyses.

As they approach the summit, most students would focus on statistics, while those who were planning to pursue a career in engineering would also take calculus. In the final two years students would be ready to build their own probabilistic models to simulate real-world situations and solve problems. They would analyse real data and write coherent reports. They would truly understand the concept of inference, and why confidence intervals are needed, rather than calculating them by hand or deriving formulas.

There is always a trade-off. Here is my take on the skills developed in each of the curricula.

## Calculus-centric curriculum |
## Statistics-centric curriculum |

Logical thinking | Communication |

Abstract thinking | Dealing with uncertainty and ambiguity |

Problem-solving | Probabilistic models |

Modelling (mainly deterministic) | Argumentation, deduction |

Proof, induction | Critical thinking |

Plotting deterministic graphs from formulas | Reading and creating tables and graphs from data |

I actually think you also learn many of the calc-centric skills in the stats-centric curriculum, but I wanted to look even-handed.

## Implementation issues

Benjamin suggests, with charming optimism, that the new focus would be “easy to implement and inexpensive.” I have been a very interested observer in the implementation of the new statistics curriculum in New Zealand. It has not happened easily, being inexpensive has been costly, and there has been fallout. Teachers from other countries (of which there are many in mathematics teaching in NZ) have expressed amazement at how much the NZ teachers accept with only murmurs of complaint. We are a nation with a “can do” attitude, who, by virtue of small population and a one-tier government, can be very flexible. So long as we refrain from following the follies of our big siblings, the UK, US and Australia, NZ has managed to have a world-class education system. And when a new curriculum is implemented, though there is unrest and stress, there is seldom outright rebellion.

In my business, I get the joy of visiting many schools and talking with teachers of mathematics and statistics. I am fascinated by the difference between schools, which is very much a function of the head of mathematics and principal. Some have embraced the changes in focus, and are proactively developing pathways to help all students and teachers to succeed. Others are struggling to accept that statistics has a place in the mathematics curriculum, and put the teachers of statistics into a ghetto where they are punished with excessive marking demands.

The problem is that the curriculum change has been done “on the cheap”. As well as being small and nimble, NZ is not exactly rich. The curriculum change needed more advisors, more release time for teachers to develop and more computer power. These all cost. And then you have the problem of “me too” from other subjects who have had what they feel are similar changes.

And this is not really embracing a full stats-centric curriculum. Primary school teachers need training in probability and statistics if we are really to implement Benjamin’s idea fully. The cost here is much greater as there are so many more primary school teachers. It may well take a generation of students to go through the curriculum and enter back as teachers with an improved understanding.

## Computers make it possible

Without computers the only statistical analysis that was possible in the classroom was trivial. Statistics was reduced to mechanistic and boring hand calculation of light-weight statistics and time-filling graph construction. With computers, graphs and analysis can be performed at the click of a mouse, making graphs a tool, rather than an endpoint. With computing power available real data can be used, and real problems can be addressed. High level thinking is needed to make sense and judgements and to avoid wrong conclusions.

Conversely, the computer has made much of calculus superfluous. With programs that can bash their way happily through millions of iterations of a heuristic algorithm, the need for analytic methods is seriously reduced. When even simple apps on an iPad can solve an algebraic equation, and Excel can use “What if” to find solutions, the need for algebra is also questionable.

## Efficient citizens

In H.G. Wells’ popular but misquoted words, efficient citizenry calls for the ability to make sense of data. As the science fiction-writer that he was, he foresaw the masses of data that would be collected and available to the great unwashed. The levelling nature of the web has made everyone a potential statistician.

According to the engaging new site from the ASA, “This is statistics”, statisticians make a difference, have fun, satisfy curiosity and make money. And these days they don’t all need to be good at calculus.

Let’s start redesigning our pyramid.