I feel a slight quiver of trepidation as I begin this post – a little like the boy who pointed out that the emperor has no clothes.

Random sampling is a myth. Practical researchers know this and deal with it. Theoretical statisticians live in a theoretical world where random sampling is possible and ubiquitous – which is just as well really. But teachers of statistics live in a strange half-real-half-theoretical world, where no one likes to point out that real-life samples are seldom random.

## The problem in general

In order for most inferential statistical conclusions to be valid, the sample we are using must obey certain rules. In particular, each member of the population must have equal possibility of being chosen. In this way we reduce the opportunity for systematic error, or bias. When a truly random sample is taken, it is almost miraculous how well we can make conclusions about the source population, with even a modest sample of a thousand. On a side note, if the general population understood this, and the opportunity for bias and corruption were eliminated, general elections and referenda could be done at much less cost, through taking a good random sample.

However! It is actually quite difficult to take a random sample of people. Random sampling is doable in biology, I suspect, where seeds or plots of land can be chosen at random. It is also fairly possible in manufacturing processes. Medical research relies on the use of a random sample, though it is seldom of the total population. Really it is more about randomisation, which can be used to support causal claims.

But the area of most interest to most people is people. We actually want to know about how people function, what they think, their economic activity, sport and many other areas. People find people interesting. To get a really good sample of people takes a lot of time and money, and is outside the reach of many researchers. In my own PhD research I approximated a random sample by taking a stratified, cluster semi-random almost convenience sample. I chose representative schools of different types throughout three diverse regions in New Zealand. At each school I asked all the students in a class at each of three year levels. The classes were meant to be randomly selected, but in fact were sometimes just the class that happened to have a teacher away, as my questionnaire was seen as a good way to keep them quiet. Was my data of any worth? I believe so, of course. Was it random? Nope.

Problems people have in getting a good sample include cost, time and also response rate. Much of the data that is cited in papers is far from random.

## The problem in teaching

The wonderful thing about teaching statistics is that we can actually collect real data and do analysis on it, and get a feel for the detective nature of the discipline. The problem with sampling is that we seldom have access to truly random data. By random I am not meaning just simple random sampling, the least simple method! Even cluster, systematic and stratified sampling can be a challenge in a classroom setting. And sometimes if we think too hard we realise that what we have is actually a population, and not a sample at all.

It is a great experience for students to collect their own data. They can write a questionnaire and find out all sorts of interesting things, through their own trial and error. But mostly students do not have access to enough subjects to take a random sample. Even if we go to secondary sources, the data is seldom random, and the students do not get the opportunity to take the sample. It would be a pity not to use some interesting data, just because the collection method was dubious (or even realistic). At the same time we do not want students to think that seriously dodgy data has the same value as a carefully collected random sample.

## Possible solutions

These are more suggestions than solutions, but the essence is to do the best you can and make sure the students learn to be critical of their own methods.

Teach the best way, pretend and look for potential problems.

Teach the ideal and also teach the reality. Teach about the different ways of taking random samples. Use my video if you like!

Get students to think about the pros and cons of each method, and where problems could arise. Also get them to think about the kinds of data they are using in their exercises, and what biases they may have.

We also need to teach that, used judiciously, a convenience sample can still be of value. For example I have collected data from students in my class about how far they live from university , and whether or not they have a car. This data is not a random sample of any population. However, it is still reasonable to suggest that it may represent all the students at the university – or maybe just the first year students. It possibly represents students in the years preceding and following my sample, unless something has happened to change the landscape. It has worth in terms of inference. Realistically, I am never going to take a truly random sample of all university students, so this may be the most suitable data I ever get. I have no doubt that it is better than no information.

All questions are not of equal worth. Knowing whether students who own cars live further from university, in general, is interesting but not of great importance. Were I to be researching topics of great importance, such safety features in roads or medicine, I would have a greater need for rigorous sampling.

So generally, I see no harm in pretending. I use the data collected from my class, and I say that we will pretend that it comes from a representative random sample. We talk about why it isn’t, but then we move on. It is still interesting data, it is real and it is there. When we write up analysis we include critical comments with provisos on how the sample may have possible bias.

What is important is for students to experience the excitement of discovering real effects (or lack thereof) in real data. What is important is for students to be critical of these discoveries, through understanding the limitations of the data collection process. Consequently I see no harm in using non-random, realistic sampled real data, with a healthy dose of scepticism.