# Proving causation

## Aeroplanes cause hot weather

In Christchurch we have a weather phenomenon known as the “Nor-wester”, which is a warm dry wind, preceding a cold southerly change. When the wind is from this direction, aeroplanes make their approach to the airport over the city. Our university is close to the airport in the direct flightpath, so we are very aware of the planes. A new colleague from South Africa drew the amusing conclusion that the unusual heat of the day was caused by all the planes flying overhead.

Statistics experts and educators spend a lot of time refuting claims of causation. “Correlation does not imply causation” has become a catch cry of people trying to avoid the common trap. This is a great advance in understanding that even journalists (notoriously math-phobic) seem to have caught onto. My own video on important statistical concepts ends with the causation issue. (You can jump to it at 3:51)

So we are aware that it is not easy to prove causation.

In order to prove causation we need a randomised experiment. We need to make random any possible factor that could be associated, and thus cause or contribute to the effect. This next video, about experimental design, addresses this concept. It is possible to prove that one factor causes an effect by using randomised design.

There is also the related problem of generalizability. If we do have a randomised experiment, we can prove causation. But unless the sample is also a random representative sample of the population in question, we cannot infer that the results will also transfer to the population in question. This is nicely illustrated in this matrix from The Statistical Sleuth by Fred L. Ramsey and Daniel W Schafer.

The relationship between the type of sample and study and the conclusions that may be drawn.

The top left-hand quadrant is the one in which we can draw causal inferences for the population.

## Causal claims from observational studies

A student posed this question:  Is it possible to prove a causal link based on an observational study alone?

It would be very useful if we could. It is not always possible to use a randomised trial, particularly when people are involved. Before we became more aware of human rights, experiments were performed on unsuspecting human lab rats. A classic example is the Vipeholm experiments where patients at a mental hospital were the unknowing subjects. They were given large quantities of sweets in order to determine whether sugar caused cavities in teeth. This happened into the early 1950s. These days it would not be acceptable to randomly assign people to groups who are made to smoke or drink alcohol or consume large quantities of fat-laden pastries. We have to let people make those lifestyle choices for themselves. And observe. Hence observational studies!

There is a call for “evidence-based practice” in education to follow the philosophy in medicine. But getting educational experiments through ethics committee approval is very challenging, and it is difficult to use rats or fruit-flies to impersonate the higher learning processes of humans. The changing landscape of the human environment makes it even more difficult to perform educational experiments.

To find out the criteria for justifying causal claims in an observational study I turned to one of my favourite statistics text-books, Chance Encounters by Wild and Seber  (page 27). They cite the Surgeon General of the United States. The criteria for the establishment of a cause and effect relationship in an epidemiological study are the following:

1. Strong relationship: For example illness is four times as likely among people exposed to a possible cause as it is for those who are not exposed.
2. Strong research design
3. Temporal relationship: The cause must precede the effect.
4. Dose-response relationship: Higher exposure leads to a higher proportion of people affected.
5. Reversible association: Removal of the cause reduces the incidence of the effect.
6. Consistency: Multiple studies in different locations producing similar effects
7. Biological plausibility: there is a supportable biological mechanism
8. Coherence with known facts.

In high school, and entry-level statistics courses, the focus is often on statistical literacy. This concept of causation is pivotal to correct understanding of what statistics can and cannot claim. It is worth spending some time in the classroom discussing what would constitute reasonable proof and what would not. In particular it is worthwhile to come up with alternative explanations for common fallacies, or even truths in causation. Some examples for discussion might be drink-driving and accidents, smoking and cancer, gender and success in all number of areas, home game advantage in sport, the use of lucky charms, socks and undies. This also ties nicely with probability theory, helping to tie the year’s curriculum together.

# Some more help (preaching?) for students of statistics

Last week I outlined the first five principles to help people to learn and study statistics.

They focussed on how you need to practise in order to be good at statistics and you should not wait until you understand it completely before you start applying. I sometimes call this suspending disbelief. Next I talked about the importance of context in a statistical investigation, which is one of the ways that statistics is different from pure mathematics. And finally I stressed the importance of technology as a tool, not only for doing the analysis, but for exploring ideas and gaining understanding.

Here are the next five principles (plus 2):

## 6. Terminology is important and at times inconsistent

There are several issues with regard to statistical terminology, and I have written a post with ideas for teachers on how to teach terminology.

One issue with terminology is that some words that are used in the study of statistics have meanings in everyday life that are not the same. A clear example of this is the word, “significant”. In regular usage this can mean important or relevant, yet in statistics, it means that there is evidence that an effect that shows up in the sample also exists in the population.

Another issue is that statistics is a relatively young science and there are inconsistencies in terminology. We just have to live with that. Depending on the discipline in which the statistical analysis is applied or studied, different terms can mean the same thing, or very close to it.

A third language problem is that mixed in with the ambiguity of results, and judgment calls, there are some things that are definitely wrong. Teachers and examiners can be extremely picky. In this case I would suggest memorising the correct or accepted terminology for confidence intervals and hypothesis tests. For example I am very fussy about the explanation for the R-squared value in regression. Too often I hear that it says how much of the dependent variable is explained by the independent variable. There needs to be the word “variation” inserted in there to make it acceptable. I encourage my students to memorise a format for writing up such things. This does not substitute for understanding, but the language required is precise, so having a specific way to write it is fine.

This problem with terminology can be quite frustrating, but I think it helps to have it out in the open. Think of it as learning a new language, which is often the case in new subject. Use glossaries, to make sure you really do know what a term means.

## 7. Discussion is important

This is linked with the issue of language and vocabulary. One way to really learn something is to talk about it with someone else and even to try and teach it to someone else. Most teachers realise that the reason they know something pretty well, is because they have had to teach it. If your class does not include group work, set up your own study group. Talk about the principles as well as the analysis and context, and try to use the language of statistics. Working on assignments together is usually fine, so long as you write them up individually, or according to the assessment requirements.

## 8. Written communication skills are important

Mathematics has often been a subject of choice for students who are not fluent in English. They can perform well because there is little writing involved in a traditional mathematics course. Statistics is a different matter, though, as all students should be writing reports. This can be difficult at the start, but as students learn to follow a structure, it can be made more palatable. A statistics report is not a work of creative writing, and it is okay to use the same sentence structure more than once. Neither is a statistics report a narrative of what you did to get to the results. Generous use of headings makes a statistical report easier to read and to write. A long report is not better than a short report, if all the relevant details are there.

## 9. Statistics has an ethical and moral aspect

This principle is interesting, as many teachers of statistics come from a mathematical background, and so have not had exposure to the ethical aspects of research themselves. That is no excuse for students to park their ethics at the door of the classroom. I will be pushing for more consideration of ethical aspects of research as part of the curriculum in New Zealand. Students should not be doing experiments on human subjects that involve delicate subjects such as abuse, or bullying. They should not involve alcohol or other harmful substances. They should be aware of the potential to do harm, and make sure that any participants have been given full information and given consent. This can be quite a hurdle, but is part of being an ethical human being. It also helps students to be more aware when giving or withholding consent in medical and other studies.

## 10. The study of statistics can change the way you view the world

Sometimes when we learn something at school, it stays at school and has no impact on our everyday lives. This should not be the case with the study of statistics. As we learn about uncertainty and variation we start to see this in the world around us. When we learn about sampling and non-sampling errors, we become more critical of opinion polls and other research reported in the media. As we discover the power of statistical analysis and experimentation, we start to see the importance of evidence-based practice in medicine, social interventions and the like.

## 11. Statistics is an inherently interesting and relevant subject.

And it can be so much fun. There is a real excitement in exploring data, and becoming a detective. If you aren’t having fun, you aren’t doing it right!

Of course!

# Statistics is not beautiful (sniff)

Statistics is not really elegant or even fun in the way that a mathematics puzzle can be. But statistics is necessary, and enormously rewarding. I like to think that we use statistical methods and principles to extract truth from data.

This week many of the high school maths teachers in New Zealand were exhorted to take part in a Stanford MOOC about teaching mathematics. I am not a high school maths teacher, but I do try to provide worthwhile materials for them, so I thought I would take a look. It is also an opportunity to look at how people with an annual budget of more than 4 figures produce on-line learning materials. So I enrolled and did the first lesson, which is about people’s attitudes to math(s) and their success or trauma that has led to those attitudes. I’m happy to say that none of this was new to me. I am rather unhappy that it would be new to anyone! Surely all maths teachers know by now that how we deal with students’ small successes and failures in mathematics will create future attitudes leading to further success or failure. If they don’t, they need to take this course. And that makes me happy – that there is such a course, on-line and free for all maths teachers. (As a side note, I loved that Jo, the teacher switched between the American “math” and the British/Australian/NZ “maths”).

I’ve only done the first lesson so far, and intend to do some more, but it seems to be much more about mathematics than statistics, and I am not sure how relevant it will be. And that makes me a bit sad again. (It was an emotional journey!)

Mathematics in its pure form is about thinking. It is problem solving and it can be elegant and so much fun. It is a language that transcends nationality. (Though I have always thought the Greeks get a rough deal as we steal all their letters for the scary stuff.) I was recently asked to present an enrichment lesson to a class of “gifted and talented” students. I found it very easy to think of something mathematical to do – we are going to work around our Rogo puzzle, which has some fantastic mathematical learning opportunities. But thinking up something short and engaging and realistic in the statistics realm is much harder. You can’t do real statistics quickly.

On my run this morning I thought a whole lot more about this mathematics/statistics divide. I have written about it before, but more in defense of statistics, and warning the mathematics teachers to stay away or get with the programme. Understanding commonalities and differences can help us teach better. Mathematics is pure and elegant, and borders on art. It is the purest science. There is little beautiful about statistics. Even the graphs are ugly, with their scattered data and annoying outliers messing it all up. The only way we get symmetry is by assuming away all the badly behaved bits. Probability can be a bit more elegant, but with that we are creeping into the mathematical camp.

## English Language and English literature

I like to liken. I’m going to liken maths and stats to English language and English literature. I was good at English at school, and loved the spelling and grammar aspects especially. I have in my library a very large book about the English language, (The Cambridge encyclopedia of the English Language, by David Crystal) and one day I hope to read it all. It talks about sounds and letters, words, grammar, syntax, origins, meanings. Even to dip into, it is fascinating. On the other hand I have recently finished reading “The End of Your Life Book Club” by Will Schwalbe, which is a biography of his amazing mother, set around the last two years of her life as she struggles with cancer. Will and his mother are avid readers, and use her time in treatment to talk about books. This book has been an epiphany for me. I had forgotten how books can change your way of thinking, and how important fiction is. At school I struggled with the literature side of English, as I wanted to know what the author meant, and could not see how it was right to take my own meaning from a book, poem or work of literature.  I have since discovered post-modernism and am happy drawing my own meaning.

So what does this all have to do with maths and statistics? Well I liken maths to English language. In order to be good at English you need to be able to read and write in a functional way. You need to know the mechanisms. You need to be able to DO, not just observe. In mathematics, you need to be able to approach a problem in a mathematical way.  Conversely, to be proficient in literature, you do not need to be able to produce literature. You need to be able to read literature with a critical mind, and appreciate the ideas, the words, the structure. You do need to be able to write enough to express your critique, but that is a different matter from writing a novel.  This, to me is like being statistically literate – you can read a statistical report, and ask the right questions. You can make sense of it, and not be at the mercy of poorly executed or mendacious research. You can even write a summary or a critique of a statistical analysis. But you do not need to be able to perform the actual analysis yourself, nor do you need to know the exact mathematical theory underlying it.

## Statistical Literacy?

Maybe there is a problem with the term “statistical literacy”. The traditional meaning of literacy includes being able to read and write – to consume and to produce – to take meaning and to create meaning. I’m not convinced that what is called statistical literacy is the same.

Where I’m heading with this, is that statistics is a way to win back the mathematically disenfranchised. If I were teaching statistics to a high school class I would spend some time talking about what statistics involves and how it overlaps with, but is not mathematics. I would explain that even people who have had difficulty in the past with mathematics, can do well at statistics.

The following table outlines the different emphasis of the two disciplines.

 Mathematics Statistics Proficiency with numbers is important Proficiency with numbers is helpful Abstract ideas are important Concrete applications are important Context is to be removed so that we can model the underlying ideas Context is crucial to all statistical analysis You don’t need to write very much. Written expression in English is important

Another idea related to this is that of “magic formulas” or the cookbook approach. I don’t have a problem with cookbooks and knitting patterns. They help me to make things I could not otherwise. However, the more I use recipes and patterns, the more I understand the principles on which they are based. But this is a thought for another day.

# Conceptualising Probability

The problem with probability is that it doesn’t really exist. Certainly it never exists in the past.

Probability is an invention we use to communicate our thoughts about how likely something is to happen. We have collectively agreed that 1 is a certain event and 0 is impossible. 0.5 means that there is just as much chance of something happening as not. We have some shared perception that 0.9 means that something is much more likely to happen than to not happen. Probability is also useful for when we want to do some calculations about something that isn’t certain. Often it is too hard to incorporate all uncertainty, so we assume certainty and put in some allowance for error.

Sometimes probability is used for things that happen over and over again, and in that case we feel we can check to see if our predication about how likely something is to happen was correct. The problem here is that we actually need things to happen a really big lot of times under the same circumstances in order to assess if we were correct. But when we are talking about the probability of a single event, that either will or won’t happen, we can’t test out if we were right or not afterwards, because by that time it either did or didn’t happen. The probability no longer exists.

Thus to say that there is a “true” probability somewhere in existence is rather contrived. The truth is that it either will happen or it won’t. The only way to know a true probability would be if this one event were to happen over and over and over, in the wonderful fiction of parallel universes. We could then count how many times it would turn out one way rather than another. At which point the universes would diverge!

However, for the interests of teaching about probability, there is the construct that there exists a “true probability” that something will happen.

What prompted these musings about probability was exploring the new NZ curriculum and companion documents, the Senior Secondary Guide and nzmaths.co.nz.

In Level 8 (last year of secondary school) of the senior secondary guide it says, “Selects and uses an appropriate distribution to solve a problem, demonstrating understanding of the relationship between true probability (unknown and unique to the situation), model estimates (theoretical probability) and experimental estimates.”

And at NZC level 3 (years 5 and 6 at Primary school!) in the Key ideas in Probability it talks about “Good Model, No Model and Poor Model” This statement is referred to at all levels above level 3 as well.

I decided I needed to make sense of these two conceptual frameworks: true-model-experimental and good-poor-no, and tie it to my previous conceptual framework of classical-frequency-subjective.

Here goes!

## Delicious Mandarins

Let’s make this a little more concrete with an example. We need a one-off event. What is the probability that the next mandarin I eat will be delicious? It is currently mandarin season in New Zealand, and there is nothing better than a good mandarin, with the desired combination of sweet and sour, and with plenty of juice and a good texture. But, being a natural product, there is a high level of variability in the quality of mandarins, especially when they may have parted company with the tree some time ago.

There are two possible outcomes for my future event. The mandarin will be delicious or it will not. I will decide when I eat it. Some may say that there is actually a continuum of deliciousness, but for now this is not the case. I have an internal idea of deliciousness and I will know. I think back to my previous experience with mandarins. I think about a quarter are horrible, a half are nice enough and about a quarter are delicious (using the Dr Nic scale of mandarin grading). If the mandarin I eat next belongs to the same population as the ones in my memory, then I can predict that there is a 25% probability that the mandarin will be delicious.

The NZ curriculum talks about “true” probability which implies that any value I give to the probability is only a model. It may be a model based on empirical or experimental evidence. It can be based on theoretical probabilities from vast amounts of evidence, which has given us the normal distribution. The value may be only a number dredged up from my soul, which expresses the inner feeling of how likely it is that the mandarin will be delicious, based on several decades of experience in mandarin consumption.

## More examples

Let us look at some more examples:

What is the probability that:

• I will hear a bird on the way to work?
• the flight home will be safe?
• it will be raining when I get to Christchurch?
• I will get a raisin in my first spoonful of muesli?
• I will get at least one raisin in half of my spoonfuls of muesli?
• the shower in my hotel room will be enjoyable?
• I will get a rare Lego ® minifigure next time I buy one?

All of these events are probabilistic and have varying degrees of certainty and varying degrees of ease of modelling.

 Easy to model Hard to model Unlikely Get a rare Lego ® minifigure Raining in Christchurch No idea Raisin in half my spoonfuls Enjoyable shower Likely Raisin in first spoonful Bird, safe flight home

And as I construct this table I realise also that there are varying degrees of importance. Except for the flight home, none of those examples matter. I am hoping that a safe flight home has a probability extremely close to 1. I realise that there is a possibility of an incident. And it is difficult to model. But people have modelled air safety and the universal conclusion is that it is safer than driving. So I will take the probability and fly.

# Conceptual Frameworks

How do we explain the different ways that probability has been described? I will now examine the three conceptual frameworks I introduced earlier, starting with the easiest.

This is found in some form in many elementary college statistics text books. The traditional framework has three categories –classical or “a priori”, frequency or historical, and subjective.

Classical or “a priori” – I had thought of this as being “true” probability. To me, if there are three red and three white Lego® blocks in a bag and I take one out without looking, there is a 50% chance that I will get a red one. End of story. How could it be wrong? This definition is the mathematically interesting aspect of probability. It is elegant and has cool formulas and you can make up all sorts of fun examples using it. And it is the basis of gambling.

Frequency or historical – we draw on long term results of similar trials to gain information. For example we look at the rate of germination of a certain kind of seed by experiment, and that becomes a good approximation of the likelihood that any one future seed will germinate. And it also gives us a good estimate of what proportion of seeds in the future will germinate.

Subjective – We guess! We draw on our experience of previous similar events and we take a stab at it. This is not seen as a particularly good way to come up with a probability, but when we are talking about one off events, it is impossible to assess in retrospect how good the subjective probability estimate was. There is considerable research in the field of psychology about the human ability or lack thereof to attribute subjective probabilities to events.

In teaching the three part categorisation of sources of probability I had problems with the probability of rain. Where does that fit in the three categories? It uses previous experimental data to build a model, and current data to put into the model, and then a probability is produced. I decided that there is a fourth category, that I called “modelled”. But really that isn’t correct, as they are all models.

## NZ curriculum terminology

So where does this all fit in the New Zealand curriculum pronouncements about probability? There are two conceptual frameworks that are used in the document, each with three categories as follows:

## True, modelled, experimental

In this framework we start with the supposition that there exists somewhere in the universe a true probability distribution. We cannot know this. Our expressions of probability are only guesses at what this might be. There are two approaches we can take to estimate this “truth”. These two approaches are not independent of each other, but often intertwined.

One is a model estimate, based on theory, such as that the probability of a single outcome is the number of equally likely ways that it can occur over the number of possible outcomes. This accounts for the probability of a red brick as opposed to a white brick, drawn at random. Another example of a modelled estimate is the use of distributions such as the binomial or normal.

In addition there is the category of experimental estimate, in which we use data to draw conclusions about what it likely to happen. This is equivalent to the frequency or historical category above. Often modelled distributions use data from an experiment also. And experimental probability relies on models as well.  The main idea is that neither the modelled nor the experimental estimate of the “true” probability distribution is the true distribution, but rather a model of some sort.

## Good model, poor model, no model

The other conceptual framework stated in the NZ curriculum is that of good model, poor model and no model, which relates to fitness for purpose. When it is important to have a “correct” estimate of a probability such as for building safety, gambling machines, and life insurance, then we would put effort into getting as good a model as possible. Conversely, sometimes little effort is required. Classical models are very good models, often of trivial examples such as dice games and coin tossing. Frequency models aka experimental models may or may not be good models, depending on how many observations are included, and how much the future is similar to the past. For example, a model of sales of slide rules developed before the invention of the pocket calculator will be a poor model for current sales. The ground rules have changed. And a model built on data from five observations of is unlikely to be a good model. A poor model is not fit for purpose and requires development, unless the stakes are so low that we don’t care, or the cost of better fitting is greater than the reward.

I have problems with the concept of “no model”. I presume that is the starting point, from which we develop a model or do not develop a model if it really doesn’t matter. In my examples above I include the probability that I will hear a bird on the way to work. This is not important, but rather an idle musing. I suspect I probably will hear a bird, so long as I walk and listen. But if it rains, I may not. As I am writing this in a hotel in an unfamiliar area I have no experience on which to draw. I think this comes pretty close to “no model”. I will take a guess and say the probability is 0.8. I’m pretty sure that I will hear a bird. Of course, now that I have said this, I will listen carefully, as I would feel vindicated if I hear a bird. But if I do not hear a bird, was my estimate of the probability wrong? No – I could assume that I just happened to be in the 0.2 area of my prediction. But coming back to the “no model” concept – there is now a model. I have allocated the probability of 0.8 to the likelihood of hearing a bird. This is a model. I don’t even know if it is a good model or a poor model. I will not be walking to work this way again, so I cannot even test it out for the future, and besides, my model was only for this one day, not for all days of walking to work.

So there you have it – my totally unscholarly musings on the different categorisations of probability.

## What are the implications for teaching?

We need to try not to perpetuate the idea that probability is the truth. But at the same time we do not wish to make students think that probability is without merit. Probability is a very useful, and at times highly precise way of modelling and understanding the vagaries of the universe. The more teachers can use language that implies modelling rather than rules, the better. It is common, but not strictly correct to say, “This process follows a normal distribution”. As Einstein famously and enigmatically said, “God does not play dice”. Neither does God or nature use normal distribution values to determine the outcomes of natural processes. It is better to say, “this process is usefully modelled by the normal distribution.”

We can have learning experiences that help students to appreciate certainty and uncertainty and the modelling of probabilities that are not equi-probable. Thanks to the overuse of dice and coins, it is too common for people to assess things as having equal probabilities. And students need to use experiments.  First they need to appreciate that it can take a large number of observations before we can be happy that it is a “good” model. Secondly they need to use experiments to attempt to model an otherwise unknown probability distribution. What fun can be had in such a class!

But, oh mathematical ones, do not despair – the rules are still the same, it’s just the vigour with which we state them that has changed.

Comment away!

## Post Script

In case anyone is interested, here are the outcomes which now have a probability of 1, as they have already occurred.

• I will hear a bird on the way to work? Almost the minute I walked out the door!
• the flight home will be safe? Inasmuch as I am in one piece, it was safe.
• it will be raining when I get to Christchurch? No it wasn’t
• I will get a raisin in my first spoonful of muesli? I did
• I will get at least one raisin in half of my spoonfuls of muesli? I couldn’t be bothered counting.
• the shower in my hotel room will be enjoyable? It was okay.
• I will get a rare Lego minifigure next time I buy one? Still in the future!

# Oh Ordinal data, what do we do with you?

What can you do with ordinal data? Or more to the point, what shouldn’t you do with ordinal data?

First of all, let’s look at what ordinal data is.

It is usual in statistics and other sciences to classify types of data in a number of ways. In 1946, Stanley Smith Stevens suggested a theory of levels of measurement, in which all measurements are classified into four categories, Nominal, Ordinal, Interval and Ratio. This categorisation is used extensively, and I have a popular video explaining them. (Though I group Interval and Ratio together as there is not much difference in their behaviour for most statistical analysis.)

Nominal is pretty straight-forward. This category includes any data that is put into groups, in which there is no inherent order. Examples of nominal data are country of origin, sex, type of cake, or sport. Similarly it is pretty easy to explain interval/ratio data. It is something that is measured, by length, weight, time (duration), cost and similar. These two categorisations can also be given as qualitative and quantitative, or non-parametric and parametric.

## Ordinal data

But then we come to ordinal level of measurement. This is used to describe data that has a sense of order, but for which we cannot be sure that the distances between the consecutive values are equal. For example, level of qualification has a sense of order

• A postgraduate degree is higher than
• a Bachelor’s degree,which is higher than
• a high-school qualification, which is higher
• than no qualification.

There are four steps on the scale, and it is clear that there is a logical sense of order. However, we cannot sensibly say that the difference between no qualification and a high-school qualification is equivalent to the difference between the high-school qualification and a bachelor’s degree, even though both of those are represented by one step up the scale.

Another example of ordinal level of measurement is used extensively in psychological, educational and marketing research, known as a Likert scale. (Though I believe the correct term is actually Likert item – and according to Wikipedia, the pronunciation should be Lick it, not Like it, as I have used for some decades!). A statement is given, and the response is given as a value, often from 1 to 5, showing agreement to the statement. Often the words “Strongly agree, agree, neutral, disagree, strongly disagree” are used. There is clearly an order in the five possible responses. Sometimes a seven point scale is used, and sometimes the “neutral” response is eliminated in an attempt to force the respondent to commit one way or the other.

The question at the start of this post has an ordinal response, which could be perceived as indicating how quantitative the respondent believes ordinal data to be.

What prompted this post was a question from Nancy under the YouTube video above, asking:

“Dr Nic could you please clarify which kinds of statistical techniques can be applied to ordinal data (e.g. Likert-scale). Is it true that only non-parametric statistics are possible to apply?”

## Well!

As shown in the video, there are the purists, who are adamant that ordinal data is qualitative. There is no way that a mean should ever be calculated for ordinal, data, and the most mathematical thing you can do with it is find the median. At the other pole are the practical types, who happily calculate means for any ordinal data, without any concern for the meaning (no pun intended.)

There are differing views on finding the mean for ordinal data.

So the answer to Nancy would depend on what school of thought you belong to.

## Here’s what I think:

All ordinal data is not the same. There is a continuum of “ordinality” if you like.

There are some instances of ordinal data which are pretty much nominal, with a little bit of order thrown in. These should be distinguished from nominal data, only in that they should always be graphed as a bar chart (rather than a pie-chart)* because there is inherent order. The mode is probably the only sensible summary value other than frequencies. In the examples above, I would say that “level of qualification” is only barely ordinal. I would not support calculating a mean for the level of qualification. It is clear that the gaps are not equal, and additionally any non-integer result would have doubtful interpretation.

Then there are other instances of ordinal data for which it is reasonable to treat it as interval data and calculate the mean and median. It might even be supportable to use it in a correlation or regression. This should always be done with caution, and an awareness that the intervals are not equal.

Here is an example for which I believe it is acceptable to use the mean of an ordinal scale. At the beginning and the end of a university statistics course, the class of 200 students is asked the following question: How useful do you think a knowledge of statistics is will be to you in your future career? Very useful, useful, not useful.

Now this is not even a very good Likert question, as the positive and negative elements are not balanced. There are only three choices. There is no evidence that the gaps between the elements are equal. However if we score the elements as 3,2 and 1, respectively and find that the mean for the 200 students is 1.5 before the course, and 2.5 after the course, I would say that there is meaning in what we are reporting. There are specific tests to use for this – and we could also look at how many students changed their minds positively or negatively. But even without the specific test, we are treating this ordinal data as something more than qualitative. What also strengthens the evidence for doing this is that the test is performed on the same students, who will probably perceive the scale in the same way each time, making the comparison more valid.

So what I’m saying is that it is wrong to make a blanket statement that ordinal data can or can’t be treated like interval data. It depends on meaning and number of elements in the scale.

# What do we teach?

And again the answer is that it depends! For my classes in business statistics I told them that it depends. If you are teaching a mathematical statistics class, then a more hard line approach is justified. However, at the same time as saying, “you should never calculate the mean of ordinal data”, it would be worthwhile to point out that it is done all the time! Similarly if you teach that it is okay to find the mean of some ordinal data, I would also point out that there are issues with regard to interpretation and mathematical correctness.

### Foot note on Pie charts

*Yes, I too eschew pie-charts, but for two or three categories of nominal data, where there are marked differences in frequency, if you really insist, I guess you could possibly use them, so long as they are not 3D and definitely not exploding. But even then, a barchart is better. – perhaps a post for another day, but so many have done this.

# Our perception of chance affects our worldview

There are many reasons that I am glad that I majored in Operations Research rather than mathematics or statistics. My view of the world has been affected by the OR way of thinking, which combines hard and soft aspects. Hard aspects are the mathematics and the models, the stuff of the abstract world. Soft aspects relate to people and the reality of the concrete world.  It is interesting that concrete is soft! Operations Research uses a combination of approaches to aid in decision making.

My mentor was Hans Daellenbach, who was born and grew up in Switzerland, did his postgrad study in California, and then stepped back in time several decades to make his home in Christchurch, New Zealand. Hans was ahead of his time in so many ways. The way I am writing about today was his teaching about probability and our subjective views on the likelihood of events.

Thanks to Daniel Kahneman’s publishing and 2002 Nobel prize, the work by him and Amos Tversky is reaching into the popular realm and is even in the high school mathematics curriculum, in a diluted form. Hans Daellenbach required first year students to read a paper by Tversky and Kahneman in the late 1980’s, over a decade earlier. This was not popular, either with the students or the tutors who were trying to make sense of the paper. Eventually we made up some interesting exercises in tutorials, and structured the approach enough for students to catch on. (Sometimes nearly half our students were from a non-English speaking background, so reading the paper was extremely challenging for them.) As a tutor and later a lecturer, I internalised the thinking, and it changed the way I see the world and chance.

People’s understanding of probability and chance events has an impact on how they see the world as well as the decisions they make.

For example, Kahneman introduced the idea of the availability heuristic. This means that if someone we know has been affected by a catastrophic (or wonderful) unlikely event, we will perceive the possibility of such an event as more likely. For example if someone we know has had their house broken into, then we feel less secure, as we perceive the likelihood of that as increased.  Someone we know wins the lottery, and suddenly it seems possible for us. Nothing has changed in the world, but our perception has changed.

There is another easily understood concept of confirmation bias. We notice and remember events and sequences of events that reinforce or confirm our preconceived notions. “Bad things come in threes” is a wonderful example. Something bad or two things bad happen, so we look for or wait for the third, and then stop counting. Similarly we remember the times when our lucky number is lucky, and do not remember the unlucky times. We mentally record the times our hunches pay off, and quietly forget the times they don’t.

## So how does this affect us as teachers of statistics? Are there ethical issues involved in how we teach statistics?

I believe in God and I believe that He guides me in my decisions in life. However I do not perceive God as a “micro-manager”. I do not believe that he has time in his day to help me to find carparks, and to send me to bargains in the supermarket. I may be wrong, and I am prepared to be proven wrong, but this is my current belief. There are many people who believe in God (or in that victim-blaming book, “The Secret”), who would disagree with me. When they see good things happen, they attribute them to the hand of God, or karma or The Secret.  There are people in some cultures who do not believe in chance at all. Everything occurs as God’s will, hence the phrase, “ insha’Allah”, or “God willing”. If they are delayed in traffic, or run into a friend, or lose their job, it is because God willed it so. This is undoubtedly a simplistic explanation, but you get the idea.

Now along comes the statistics teacher and teaches probability.  Mathematically there are some things for which the probability is easily modelled. Dice, cards, counters, balls in urns, socks in drawers can all have their probability modelled, using the ratio of number of chosen events over number of possible events. There are also probabilities estimated using historic frequencies, and there are subjective estimates of probabilities. Tversky and Kahnemann’s work showed how flawed humans are at the subjective estimates.

For some (most?) students probability remains “school-knowledge” and makes no difference to their behaviour and view of the world. It is easy to see this on game-shows such as “Deal or No Deal”, my autistic son’s favourite. It is clear that except for the decision to take the deal or not, there is no skill whatsoever in this game. In the Australian version, members of the audience hold the different cases and can guess what their case holds. If they get it right they win \$500. When this happens they are praised – well done! When the main player is choosing cases, he or she is warned that they will need to be careful to avoid the high value cases. This is clearly impossible, as there is no way of knowing which cases contain which values. Yet they are praised, “Well done!” for cases that contain low values. Sometimes they even ask the audience members what they think they are holding in the case. This makes for entertaining television – with loud shouting at times to “Take the Deal!”. But it doesn’t imbue me with any confidence that people understand probability.

Having said that, I know that I act irrationally as well. In the 1990s there were toys called Tamagotchis which were electronic pets. To keep your pet happy you had to “play” with it, which involved guessing which way the pet would turn. I KNEW that it made NO difference which way I chose and that I would do just as well by always choosing the same direction. Yet when the pet had turned to the left four times in succession, I would choose turning to the right. Assuming a good random number generator in the pet, this was pointless. But it also didn’t matter!

So if I, who have a fairly sound understanding of probability distributions and chance, still think about which way my tamagotchi is going to turn, I suspect truly rational behaviour in the general populace with regard to probabilistic events is a long time coming! Astrologers, casinos, weather forecasters, economists, lotteries and the like will never go broke.

However there are other students for whom a better understanding of the human tendency to find patterns, and confirm beliefs could provide a challenge. Their parents may strongly believe that God intervenes often or that there is no uncertainty, only lack of knowledge. (In a way this is true, but that’s a topic for another day) Like the child who has just discovered the real source of Christmas bounty, probability models are something to ponder, and can be disturbing.

We do need to be sensitive in how we teach probability. Not only can we shake people’s beliefs, but we can also use insensitive examples. I used to joke about how car accidents are a poisson process with batching, which leads to a very irregular series. Then for the last two and a half years I have been affected by the Christchurch earthquakes.  I have no sense of humour when it comes to earthquakes. None of us do. When I saw in a textbook an example of probability a building falling down as a result of an earthquake, I found that upsetting. A friend was in such a building and, though she physically survived it will be a long time before she will have a full recovery, if ever. Since then I have never used earthquakes as an example of a probabilistic event when teaching in Christchurch. I also refrain as far as possible from using other examples that may stir up pain, or try to treat them in a sober manner. Breast cancer, car accidents and tornadoes kill people and may well have affected our pupils. Just a thought.

# Teaching a service course in statistics

Most students who enrol in an initial course in statistics at university level do so because they have to. I did some research on attitudes to statistics in my entry level quantitative methods course, and fewer than 1% of the students had chosen to be in that course. This is a little demoralising, if you happen to think that statistics is worthwhile and interesting.

Teaching a service course in statistics is one of the great challenges of teaching. A “Service Course” is a course in statistics for students who are majoring in some other subject, such as Marketing or Medicine or Education. For some students it is a terminating course – they will never have to look at a p-value again (they hope). For some students it is the precursor to further applied statistics such as marketing research or biological research. Having said that, statistics for citizens is important and interesting and engaging if taught that way. And we might encourage some students to carry on.

Yet the teachers and textbook writers seem to do their best to remove the joy. Statistics is a difficult subject to understand. Often the way the instructor thinks is at odds with the way the students think and learn. The mathematical nature of the subject is invested with all sorts of emotional baggage.

Here are some of the challenges of teaching a statistics service course.

## Limited mathematical ability

It is important to appreciate how limited the mathematical understanding is of some of the students in service courses. In my first year quantitative methods course, I made sure my students knew basic algebra, including rearranging and solving equations. This was all done within a business context. Even elementary algebra  was quite a stumbling block to some students, for whom algebra had been a bridge too far at school. There were students in a postgrad course I taught who were not sure which was larger, out of 0.05 and 0.1, and talked about crocodiles with regard to greater than and less than signs. And these were schoolteachers! Another senior maths teacher in that group had been teaching the calculation of confidence intervals, without actually understanding what they were.

The students are not like statisticians. Methods that worked to teach statisticians and mathematicians are unlikely to work for them. I wrote about this in my post about the Golden Rule, and how it applies at a higher level for teaching.

I realised a few years ago that I am not a mathematician. I do not have the ability to think in the abstract that is part of a true mathematician. Operations Research was my thing, because I was good at mathematics, but my understanding was concrete. This has been a surprising gift for me as a teacher, as it has meant that I can understand better what the students find difficult. Formulas do not tell them anything. Calculating by hand does not lead to understanding. It is from this philosophy that I approach the production of my videos. I am particularly pleased with my recent video about confidence intervals, which explains the ideas, with nary a formula in sight, but plenty of memorable images.

## Software

One of my more constantly accessed posts is  Excel, SPSS, Minitab or R?. This consistent interest indicates that the course of software is a universal problem.  People are very quick to say how evil Excel is, and I am under no illusions as to many of the shortcomings. The main point of my post was, however, that it depends on the class you are teaching.

When business students learn using Excel, it has the appearance of relevance. They are aware that spreadsheets are used in business. It doesn’t seem like time wasted. So I stand by my choice to use Excel. However if I were still teaching at University, I would also be using iNZight. And if I taught higher levels I would continue to use SPSS, and learn more about R.

## Textbooks

As I said in a previous post Statistics Textbooks suck out all the fun. Very few textbooks do no harm. I wonder if this site could provide a database of statistics texts and reviews. I would be happy to review textbooks and include them here. My favourite elementary textbook is, sadly, out of print. It is called “Taking the Fear out of Data Analysis”, by the fabulously named Adamantis Diamantopoulos and Bodo Schlegelmilch. It takes a practical approach, and has a warm, nurturing style. It lacks exercises. I have used extracts from it over the years. The choice of textbook, like the choice of software, is “horses for courses”, but I think there are some horses that should not be put anywhere near a course. I do wonder how many students use textbooks as anything other than a combination lucky charm and paper weight.

In comparison with the plethora of college texts of varying value, at high-school level the pickings for textbooks are thin. This probably reflects the newness of the teaching of statistics at high-school level.  A major problem with textbooks is that they are so quickly out of date, and at school level it is not practical to replace class sets too often.

Perhaps the answer is online resources, which can be updated as needed, and are flexible and give immediate feedback.

## Emotional baggage

I was less than gentle with a new acquaintance in the weekend. When asked about my business, I told him that I make on-line materials to help people teach and learn statistics. He proceeded to relate a story of a misplaced use of a percentage as a reason why he never takes any notice of statistics. I have tired of the “Lies, damned lies, and statistics” jibe and decided not to take it lying down. I explained that the world is a better place because of statistical analysis. Much research, including medical would not be possible in the absence of methods for statistical analysis. An understanding of the concepts of statistics is a vital part of intelligent citizenship, especially in these days of big and ubiquitous data.

I stopped at that point, but have pondered since. What is it that makes people so quick to denigrate the worth of statistics? I suspect it is ignorance and fear. They make themselves feel better about their inadequacies by devaluing the things they lack. Just a thought.

This is not an isolated instance. In fact I was so surprised when a lighthouse keeper said that statistics sounded interesting and wanted to know more, that I didn’t really know what to say next! You can read about that in a previous post. Statistics is an interesting subject – really!

But the students in a service course in statistics may well be in the rather large subset of humanity who have yet to appreciate the worth of the subject. They may even have fear and antipathy towards the subject, as I wrote about previously. Anxiety, fear and antipathy for maths, stats and OR.

People are less likely to learn if they have negative attitudes towards the subject. And when they do learn it may well be “learning to pass” rather than actual learning which is internalised.

## So what?

Keep the faith! Statistics is an important subject. Keep trying new things. If you never have a bad moment in your teaching, you are not trying enough new things. And when you hear from someone whose life was changed because of your teaching, there is nothing like it!

# What is the statistical enquiry cycle and why is it a cycle? Is it really a cycle?

The New Zealand curriculum for Mathematics and statistics was recently held up as an example of good practice with regard to statistics. Yay us! In New Zealand the learning of statistics starts at the beginning of schooling and is part of the curriculum right through the school years. Statistics is developed as a discipline alongside mathematics, rather than as a subset of it. There are mathematics teachers who view this as an aberration, and believe that when this particular fad is over statistics will go back where it belongs, tucked quietly behind measurement, algebra and arithmetic. But the statisticians rejoice that the rich and exciting world of real data and detective work is being opened up to early learners. The outcome for mathematics and statistics remains to be seen.

A quick look over the Australian curriculum shows ostensibly a similar emphasis with regard to content at most levels.  The big difference (at first perusal) is that the New Zealand curriculum has two strands of statistics – statistical investigation, and statistical literacy, whereas the Australian curriculum has the more mathematical approach of “Data representation and interpretation”.  Both include probability as another strand.

## Data Detective Cycle

In the New Zealand curriculum, the statistical investigation strand at every level refers to the “Statistical enquiry cycle”, shown here, which is also known as the PPDAC cycle. This is a unifying theme and organising framework for teachers and learners.

The data detective poster

This link takes you to a fuller explanation of the statistical enquiry cycle and its role at the different levels of the school curriculum. Note that the levels do not correspond to years. Click here to see the correspondence. The first five levels correspond to about 2 years each, whereas levels 6,7 and 8 correspond to the final three years of high school. So a child working on level 3 is generally aged about 10 or 11.

As I provide resources to support teaching and learning within the NZ curriculum I have become more aware of this framework, and have some questions and suggestions. I have made a table from which I hope to develop another diagram that students at higher levels can engage with, particularly with regard to the reporting aspects. As this is a work in progress you will have to wait!

## Origins

Let’s look at the origins of the diagram and terminology. Maxine Pfannkuch (an educator) worked with Chris Wild (a statistician) to articulate what it is that statisticians do. They published their results in the international statistical review in 1999 and contributed the chapter “Towards an understanding of statistical thinking” in “The Challenge of Developing Statistical Literacy, Reasoning and Thinking”, edited by Dani Ben-Zvi and Joan Garfield. The statistical enquiry cycle has consequently been promulgated in the diagram and description referred to above. There is sound research behind this, and it makes good sense as a way of explaining what statisticians do.

## Diagrams

I love diagrams. Anyone who has viewed my videos will know this. I spend a great deal of mental energy (usually while running) trying to work out ways to convey ideas in a visual way that will help people to learn, understand and remember. I also do NOT believe in the fad of learning styles, but rather I believe that all learners will gain from different presentations of concepts. I also believe that it is a useful discipline for a teacher to create different ways of expressing concepts. I am rather fussy about diagrams, however, as our Honours students would attest. I have a particular problem with arrows which mean different things in different places. If an arrow denotes passage of time in one instance it should do so in all instances, or a different style of arrow should be employed.

## No way in or out

A problem I have with the PPDAC “Cycle” being a cycle is that it seems to imply that we can come in at any point and that there is no escape. If there is a logical starting point, and the link back to it is not one of process, then that should be indicated. Because the arrows are all the same style in the PPDAC diagram, it is also difficult to see a way out of the cycle. As a learner I would find it a little daunting to think that I could never escape! I am also concerned about understanding in what way does a Conclusion lead to a Problem? Surely the whole point of the word “Conclusion” is that it concludes or ends something?

To me there are at least three linkages between the Problem and the Conclusion. First of all, while in the Problem stage, we need to think about what we want to be able to say in the future Conclusion stage.  We may not know which way our conclusion will go, though we will probably have an opinion, or even a hope! (I am too post-modern in my thinking to believe in the objectivity of the researcher.) For instance we may want to be able to say – There is (or is not) evidence that women own more pairs of shoes than men. Another linkage is that when we write up our conclusion we must refer back to the original problem. And the third linkage comes from a comment Jean Thompson made on my blog about teaching time series without many computers. “Often the answer from a good statistical analysis is more questions”.  One conclusion can lead to a new problem.

I found a similar diagram online which is more sequential, starting with the problem and working vertically through the steps, with a link at the end going back to the beginning. I like this, because it does give an idea of conclusion and moving on, rather than being caught in some endless cycle. The reality for students is that they will generally do some project, which will start with a problem and end with a conclusion. Then they will move on to an unrelated project. It has also been my experience as a practitioner.

In my experience the cyclical behaviour which this diagram portrays is generally more within the cycle than over the whole cycle. For instance one may be part way through the data collection and realise that it isn’t going to work, and go back to the “Plan” stage. Some of these extra loops are suggested in my table.

## Reporting

For students at a higher level who are required to write reports, it is difficult to see how the report fits in with the cycle. The “Conclusion” step includes “communication”, which could imply a report. However reports often include most of the steps, particularly when their purpose is to satisfy an assessment requirement.

## Existing datasets

It is also difficult to apply the cycle in a non-cynical way to work with existing datasets. Often, in the interests of time and quality control, students are given a dataset. In reality they start, not at the Problem step, but somewhere between the Data step and the Analysis step. In their assessments they are required to read around the topic and use their imaginations to come up with the problem, look at how the data was collected, and move on from there.  This is not always the case, but it is for NCEA level 3 Bivariate Investigation, Time Series analysis and Formal Inference areas (called ‘standards’). The only area where they really do plan and collect the data is in the Experimental Design standard. Might it not be helpful to provide an adapted plan that takes into account these exigencies? Let us be explicit about it rather than coyly pretend that the data wasn’t driving everything?

In general I like the concept of the statistical enquiry cycle, and I am happy that it is providing a unifying theme to the curriculum. However, particularly at higher levels, I think it needs a bit of tweaking, taking into account the experience of teachers and learners.  If it is to hold such an important place in a curriculum that is leading the world, it deserves on-going attention.

## Disclaimer

This is a blog and not an academic journal. The ideas I have contemplated need a lot more thought and background reading, but I do not have the time or the university salary to support such a luxury right now. Maybe someone else does!

# The role of context in statistical analysis

The wonderful advantage of teaching statistics is the real-life context within which any applicaton must exist. This can also be one of the difficulties. Statistics without context is merely the mathematics of statistics, and is sterile and theoretical.  The teaching of statistics requires real data. And real data often comes with a fairly solid back-story.

One of the interesting aspects for practicing statisticians, is that they can find out about a wide range of applications, by working in partnership with specialists. In my statistical and operations research advising I have learned about a range of subjects, including the treatment of hand injuries, children’s developmental understanding of probability, the bed occupancy in public hospitals, the educational needs of blind students, growth rates of vegetables, texted comments on service at supermarkets, killing methods of chickens, rogaine route choice, co-ordinating scientific expeditions to Antarctica and the cost of care for neonatals in intensive care. I found most of these really interesting and was keen to work with the experts on these projects. Statisticians tend to work in teams with specialists in related disciplines.

# Learning a context can take time

When one is part of a long-term project, time spent learning the intricacies of the context is well spent. Without that, the meaning from the data can be lost. However, it is difficult to replicate this in the teaching of statistics, particularly in a general high school or service course. The amount of time required to become familiar with the context takes away from the time spent learning statistics. Too much time spent on one specific project or area of interest can mean that the students are unable to generalise. You need several different examples in order to know what is specific to the context and what is general to all or most contexts.

One approach is to try to have contexts with which students are already familiar. This can be enabled by collecting the data from the students themselves. The Census at School project provides international data for students to use in just this way. This is ideal, in that the context is familiar, and yet the data is “dirty” enough to provide challenges and judgment calls.

Some teachers find that this is too low-level and would prefer to use biological data, or dietary or sports data from other sources. I have some reservations about this. In New Zealand the new statistics curriculum is in its final year of introduction, and understandably there are some bedding-in issues. One I perceive is the relative importance of the context in the students’ reports. As these reports have high-stakes grades attached to them, this is an issue. I will use as an example the time series “standard”. The assessment specification states, among other things, “Using the statistical enquiry cycle to investigate time series data involves: using existing data sets, selecting a variable to investigate, selecting and using appropriate display(s), identifying features in the data and relating this to the context, finding an appropriate model, using the model to make a forecast, communicating findings in a conclusion.”

The full “standard” is given here: Investigate Time Series Data This would involve about five weeks of teaching and assessment, in parallel with four other subjects.(The final 3 years of schooling in NZ are assessed through the National Certificate of Educational Achievement (NCEA). Each year students usually take five subject areas, each of which consists of about six “achievement standards” worth between 3 and 6 credits. There is a mixture of internally and externally assessed standards.)

In this specification I see that there is a requirement for the model to be related to the context. This is a great opportunity for teachers to show how models are useful, and their limitations. I would be happy with a few sentences indicating that the student could identify a seasonal pattern and make some suggestions as to why this might relate to the context, followed by a similar analysis of the shape of the trend. However there are some teachers who are requiring students to do independent literature exploration into the area, and requiring references, while forbidding the referencing of Wikipedia.

# This concerns me, and I call for robust discussion.

Statistics is not research methods any more than statistics is mathematics. Research methods and standards of evidence vary between disciplines. Clearly the evidence required in medical research will differ from that of marketing research. I do not think it is the place of the statistics teacher to be covering this. Mathematics teachers are already being stretched to teach the unfamiliar material of statistics, and I think asking them and the students to become expert in research methods is going too far.

It is also taking out all the fun.

# Keep the fun

Statistics should be fun for the teacher and the students. The context needs to be accessible or you are just putting in another opportunity for antipathy and confusion. If you aren’t having fun, you aren’t doing it right. Or, more to the point, if your students aren’t having fun, you aren’t doing it right.

# Some suggestions about the role of context in teaching statistics and operations research

• Use real data.
• If the context is difficult to understand, you are losing the point.
• The results should not be obvious. It is not interesting that year 12 boys weigh more than year 9 boys.
• Null results are still results. (We aren’t trying for academic publications!)
• It is okay to clean up data so you don’t confuse students before they are ready for it.
• Sometimes you should use dirty data – a bit of confusion is beneficial.
• Various contexts are better than one long project.
• Avoid the plodding parts of research methods.
• Avoid boring data. Who gives a flying fish about the relative sizes of dolphin jaws?
• Wikipedia is a great place to find out the context for most high school statistics analysis. That is where I look. It’s a great starting place for anyone.

# Shibboleth, Mixolydian, Heteroscedasticity – and Kipling

All areas of human endeavour have specific language. Cricket commentators, art critics and wines buff make this very obvious.

## Mixolydian

My son, who is blind, autistic and plays the piano like an angel, is studying Jazz, and I’m helping him. You can read more about this in my other blog Never Ordinary. There is a specific language around Jazz, and I’m not talking about ‘scat’. (Hmm just realised the other meaning for that word!) In the Jazz course they use words like Mixolydian, Chromatisism, Quartal Harmony…  I nod and smile. This language expresses ideas clearly and uniquely and is outside my comprehension. (Mixolydian is based on the Major scale, but with a flat 7. – clearer now?)

## Trumpetty yellow, Daffodils, Narcissus

This week there was a statistics list discussion about the meaning of the term “multivariate”. As part of the ongoing discussion, someone suggested that using exact terminology exactly avoids a situation such as saying “I have yellow flowers in my garden with trumpetty bits, that come out in spring and have oniony looking bits in the ground.” This can also be said as “I have daffodils in my garden”.  However it can also be said as “I have Narcissus pseudonarcissus  in my garden”. Each of those phrases expresses the same idea, but with differing clarity or exclusiveness depending on the audience.

## Shibboleth

Language can be used to exclude, as well as to inform or communicate. The term “shibboleth” comes from the book of Judges. When the Gileadites wished to find out if people crossing the river were Ephraimites, they would ask them to say the word “shibboleth”. If they said it as sibboleth, they killed them. The Old Testament can be a bit like that. The word “shibboleth” is now used to mean a code word, or knowledge that only a certain culture or group will know. Sometimes it can seem that statistical terms are used so only the initiated will be able to understand.

## Virtue and Common Touch

As statisticians, operations researchers and teachers of statisticians and operations researchers we have many different opportunities to select the language we use. We must always be aware of our audience. In the poem, “If”, Kipling encourages people to be able to “…talk with crowds and keep your virtue, Or walk with Kings – nor lose the common touch,” Academics “walk with kings” when they write academic papers, using highly specialised and exclusive language. We need to make sure we do not lose the common touch. At the same time we should “keep our virtue”, and use the correct statistical term when the circumstances arise, making sure that we retain the common touch so that all understand.

## Heteroscedasticity

When I use the term heteroscedasticity I am usually doing so for one of two reasons. First, that the data in question has non-constant variance, and I am explaining the concept and technical term to a client, student or colleague. Second, because I really like the word. “Heteroscedasticity” is eight syllables of tongue-twisting goodness! But, really, “non-constant variance” says exactly the same thing, has only six syllables and is easier to understand. I suspect a degree of linguistic snobbery appearing.

# Communicating Statistics

Greenfield wrote a paper in 1993, which is still disappointingly relevant today. In “Communicating Statistics” (http://greenfieldresearch.co.uk/papers/Communicating%20stats.pdf) he suggests that statisticians have a great deal to offer the world, and that we aren’t doing a good job of making people aware of that. He was damning of the type of language used in academic publications, which ensure that any potentially useful results are obscured by “prolix and pseudo-objective style”.

This flows over into our consulting endeavours, where the aim should be to communicate rather than exclude. Greenfield gives the example fictionalised in this comic:

Depiction of almost true event. Click to view.

Greenfield’s parting provocative statement was to suggest that statisticians produce more cookery-books and more easy-to-use programs, and encourage their use by everybody who can benefit. These books and programs can carry the message that if they want to do better they should study more and seek the guidance of statisticians.

In closing he says “Our audience, our customers are out there. They need us, even if they do not realise it. We must change our culture, our philosophy, our public relations and our use of language to reach them.”

# Greenfield Challenge

I’m not sure I want to be telling you about the Greenfield challenge, as I’m thinking of entering it, and would really like a trip to Ankara for the ENBIS conference. But in pursuit of the greater good, I am putting a link here: The Greenfield Challenge. The blurb explains:

“We would like to encourage you to report immediately whenever you’ve had dealings with non-statisticians – in whichever form (face-to-face, in writing, in form of an audio or video recording, in interactive social media … ) or context (interactions with students, educators, managers and employees of organizations in private and public sectors … ).”

Greenfield even suggests “You might even write a short story or a play.”

Still thinking about that one. I guess there is always “The Goal” to look to for an example. In the meantime I’ll stick to this work of mostly non-fiction, interspersed with opinion and anecdote.

# Choose our words

When we use very specific technical terms we need to make sure that they are really necessary. Is there a simpler, and just as accurate way of saying the same thing? If our audience is statisticians, then really we can indulge in specific technical language. But if the audience includes students, non-statisticians and the general public, then we should probably use simpler terms, or at least “gloss”, or say what the word means along with its use. (There was an example of glossing right there!)

I have written earlier about the minefield of statistical terminology, particularly when the statistical word also has an everyday meaning which is not quite the same. Examples of this are “significant”, “random” and “relationship”. The post includes some suggestions for teaching statistical language.

But as well as teachers, we are also communicators, and need to get our message across in the best way possible. It is vital to determine our audience, and make sure we bring them along with us.

I contemplate the new New Zealand curriculum with excitement. Through the efforts of a group of statisticians we are able to inculcate a greater understanding of the essentials of statistics from an early age to much of the population. The role of the statisticians is to help the teachers feel at home in the world of statistics, so that they can invite their students along. These are exciting times. The rest of the world is watching.